Loss
Loss functions
NNJulia.Loss.AbstractLoss
— TypeAbstractLoss
Every loss struct is a subtype of AbstractLoss
NNJulia.Loss.MSE
— TypeMSE
Represents the Mean Squared Error : L(y,y^i)=∑(y-y^i)^2
NNJulia.Loss.BinaryCrossentropy
— TypeBinaryCrossentropy
Represents the Binary crossentropy error function
NNJulia.Loss.CategoricalCrossentropy
— TypeCategoricalCrossentropy
Represents the Categorical crossentropy error function
NNJulia.Loss.compute_loss
— Functioncompute_loss(lossF::MSE, predicted::Tensor, target::Union{Tensor,AbstractArray,Float64,Int64})
compute_loss(lossF::BinaryCrossentropy, predicted::Tensor, target::Union{Tensor,AbstractArray,Float64,Int64})
compute_loss(lossF::CategoricalCrossentropy, predicted::Tensor, target::Union{Tensor,AbstractArray,Float64,Int64})
Compute the loss according to the lossF given.