Model
NNJulia.TrainParameters
— TypeTrainParameters(opt::AbstractOptimiser, lossFunction::AbstractLoss, metrics::AbstractMetrics)
This struct store the important parameters used to train the model.
Fields
- opt: The optimiser used to optimise the loss
- lossFunction: The function used to compute the loss
- metrics: The metrics used to compute the accuracy of the model
NNJulia.train!
— Functiontrain!(model::AbstractModel, trainParams::TrainParameters, trainData::DataLoader, nbEpochs::Int, verbose::Bool=true)
This method train a model on the trainData. The accuracy and the loss computed at each epoch is stored into a dictionnary that is returned at the end of the training.
The dictionnary returned looks like this : history = Dict("accuracy" => Float64[], "loss" => Float64[])
NNJulia.evaluate
— Functionevaluate(model::AbstractModel, metrics::BinaryAccuracy, xData::Union{Tensor,AbstractArray,Float64,Int64}, yData::Union{Tensor,AbstractArray,Float64,Int64})
This method evaluate a model by returning the accuracy computed with the given metrics