Classic SIR
SIR.Rd
Apply a single-index \(SIR\) on \((X,Y)\) with \(H\) slices. This function allows to obtain an estimate of a basis of the \(EDR\) (Effective Dimension Reduction) space via the eigenvector \(\hat{b}\) associated with the largest nonzero eigenvalue of the matrix of interest \(\widehat{\Sigma}_n^{-1}\widehat{\Gamma}_n\). Thus, \(\hat{b}\) is an \(EDR\) direction.
Arguments
- Y
A numeric vector representing the dependent variable (a response vector).
- X
A matrix representing the quantitative explanatory variables (bind by column).
- H
The chosen number of slices (default is 10).
- graph
A boolean that must be set to true to display graphics (default is TRUE).
- choice
the graph to plot:
"eigvals" Plot the eigen values of the matrix of interest.
"estim_ind" Plot the estimated index by the SIR model versus Y.
"" Plot every graphs. (default)
Value
An object of class SIR, with attributes:
- b
This is an estimated EDR direction, which is the principal eigenvector of the interest matrix.
- M1
The interest matrix.
- eig_val
The eigenvalues of the interest matrix.
- n
Sample size.
- p
The number of variables in X.
- H
The chosen number of slices.
- call
Unevaluated call to the function.
- index_pred
The index Xb' estimated by SIR.
- Y
The response vector.
Examples
# Generate Data
set.seed(10)
n <- 500
beta <- c(1,1,rep(0,8))
X <- mvtnorm::rmvnorm(n,sigma=diag(1,10))
eps <- rnorm(n)
Y <- (X%*%beta)**3+eps
# Apply SIR
SIR(Y, X, H = 10)
#>
#> Call:
#> SIR(Y = Y, X = X, H = 10)
#>
#> Results of EDR directions estimation:
#>
#> Estimated direction
#> X1 -0.71000
#> X2 -0.69900
#> X3 -0.01830
#> X4 0.03170
#> X5 0.00323
#> X6 0.06760
#> X7 0.01050
#> X8 0.00896
#> X9 0.00403
#> X10 -0.01110
#>