The SIR model

Thresholdings 0000 Example 000 Simulations

Conclusion

References

Appendix O

Ínaía-

SÉLECTION DE VARIABLES EN RÉGRESSION SIR (SLICED INVERSE REGRESSION) PAR SEUILLAGE DOUX/DUR DE LA MATRICE D'INTÉRÊT Hadrien Lorenzo^{1,3} & Jérôme Saracco^{1,2,3} & Clément Weinreich^{1,2} hadrien.lorenzo@u-bordeaux.fr

> ¹ ASTRAL Team, Inria, Talence ³ OptimAl team, IMB, CNRS UMR 5251

> > Tuesday June 16th 2022

H. Lorenzo

Variable selection via thresholded SIR

The SIR model ●○ Thresholdings

Example 000 Simulations 0000000 Conclusion o References

Appendix o

SIR, a semi-parametric model

Theoretical context : The semi-parametric single index model from Duan and Li 1991 as

$$y = f(\beta' x) + \epsilon \tag{1}$$

where:

- > y is a univariate response variable,
- ► $x \in \mathbb{R}^{p}$, covariates, such as $\mathbb{E}(x) = \mu$ and $\mathbb{V}(x) = \Sigma$,
- ϵ is independent of x,
- ► *f* the link function and $\beta \in \mathbb{R}^p$ the euclidean parameter are unknown.

f being unknown, β is not fully identifiable.

However, it is possible to estimate the space generated by β , called EDR (Effective Dimension Reduction) space.

Note : The model (1) can be generalized to a non-additive and heteroscedastic noise.

H. Lorenzo

Variable selection via thresholded SIR

Estimation of the EDR space and f

The estimation of the SIR model involves 2 steps: **Estimation of the EDR space**

$$\Gamma = \mathbb{V}\left[\mathbb{E}\{x|T(y)\}\right] = \sum_{h=1}^{H} p_h(m_h - \mu)(m_h - \mu)'$$

► T a slicing function which cuts the Y support into H slices {s₁,..., s_H}

- ▶ $p_h = P(Y \in s_h)$ and $m_h = \mathbb{E}[X | Y \in s_h]$,
- The principal eigenvector of Σ⁻¹Γ, denoted b ∈ ℝ^p, is an EDR direction.

 \implies The principal eigenvector \hat{b}_{SIR} of $\hat{\Sigma}^{-1}\hat{\Gamma}$ is an estimated EDR direction. This estimation, suffers from the curse of dimensionality.

Estimation of f

Use of a non-parametric kernel estimator on $(y, \hat{b}'_{SIR}x)$.

The SIR model	Thresholdings ●000	Example 000	Simulations	Conclusion O	References	Appendix O
Soft thre	sholding					

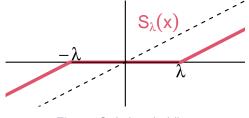


Figure: Soft thresholding

$$S_{\lambda}(x) = sign(x) \times \begin{cases} |x| - \lambda & \text{if } |x| - \lambda > 0, \\ 0 & \text{else.} \end{cases}$$
(2)

 \implies Soft thresholding: continuity, but bias for high values.

The SIR model	Thresholdings	Example	Simulations	Conclusion	References	Appendix
00	0000	000	0000000	0		0
Llord thr	achalding					

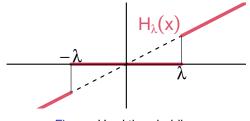


Figure: Hard thresholding

$$H_{\lambda}(x) = \begin{cases} x & \text{if } |x| - \lambda > 0, \\ 0 & \text{else.} \end{cases}$$
(3)

 \implies Hard thresh.: no bias for high values, but discontinuity.

The SIR model	Thresholdings	Example	Simulations	Conclusion	References	Appendix
00	0000	000	0000000	0		0

ST-SIR and HT-SIR estimators

•
$$\hat{b}_{ST-SIR}(\lambda)$$
: principal eigenvector of $S_{\lambda}(\hat{\Sigma}_n^{-1}\hat{\Gamma}_n)$.

•
$$\hat{b}_{HT-SIR}(\lambda)$$
: principal eigenvector of $H_{\lambda}(\hat{\Sigma}_n^{-1}\hat{\Gamma}_n)$.

The choice of the thresholding hyper-parameter $\boldsymbol{\lambda}$ must provide a balance between

- correct variable selection,
- low distortion of the estimated direction \hat{b}_{SIR} too much.

$\hookrightarrow \hat{\lambda}_{opt} \implies$ selection of \hat{p}^{\star} selected variables.

The SIR model	Thresholdings ○○○●	Example 000	Simulations	Conclusion o	References	Appendix o

Before variable selection...

• \hat{b}_{SIR} : SIR estimator based on the *p* variables.

$$\blacktriangleright \hat{b}_{HT-SIR} := \hat{b}_{HT-SIR}(\hat{\lambda}_{opt-HT}).$$

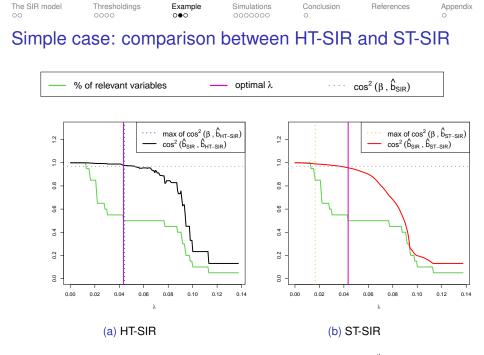
$$\blacktriangleright \hat{b}_{ST-SIR} := \hat{b}_{ST-SIR}(\hat{\lambda}_{opt-ST}).$$

... after variable selection

- 1. Consider the \hat{p}^* selected variables (based on $\hat{\lambda}_{opt-ST}$)).
- 2. \hat{b}_{SIR}^* : estimated EDR direction using the "reduced" SIR model based on the selected \hat{p}^* variables.

The SIR model	Thresholdings	Example	Simulations	Conclusion	References	Appendix
00	0000	000	0000000	0		0

Example: the simulated regression model


$$y = (x'\beta)^3 + \epsilon,$$

$$\beta = (1, ..., 1, 0, ..., 0)' \in \mathbb{R}^p,$$

here $p = 20$ and $p^* = 10$

$$x \sim \mathcal{N}(0, \mathbb{I}_p)$$

$$\epsilon \sim \mathcal{N}(0, 10) \text{ and } \epsilon \perp x.$$

Figure: Sample size n=300, Noise to signal ratio = 0.1

The SIR model	Thresholdings	Example	Simulations	Conclusion	References	Appendix
00	0000	000	0000000	0		0

Overall results for that case

HT-SIR and ST-SIR, similar results in selection:

- $\hat{p}^* = 10$ variables selected over the p = 20 variables.
- List of the p^{*} = 10 selected variables : X1, X2, X3, X4, X5, X6, X7, X8, X9, X10

Very good estimation of the EDR direction:

•
$$cos^2(\beta, \hat{b}_{HT-SIR}) = 0.98$$

•
$$cos^2(\beta^*, \hat{b^*}_{SIR}) = 0.99$$

The SIR model	Thresholdings	Example	Simulations	Conclusion	References	Appendix
00	0000	000	●000000	0		0

Simulation plan

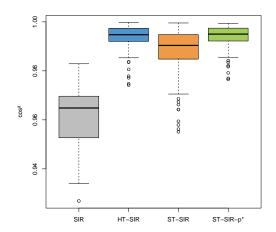
Same regression model: $y = (x'\beta)^3 + \epsilon$

$$\blacktriangleright \beta = (1, \ldots, 1, 0, \ldots, 0)' \in \mathbb{R}^p,$$

•
$$x \sim athcalN(0, \mathbb{I}_p)$$

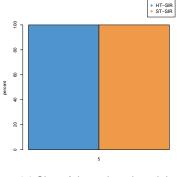
•
$$\epsilon \sim \mathcal{N}(0, 10)$$
 and $\epsilon \perp x$.

Simulations with various values of (n, p, p^*) :

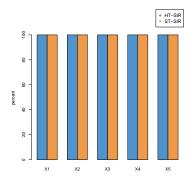

n ∈ {200, 300, 500}
p and *p*^{*} so that
$$\frac{p^*}{p} = \frac{1}{5}$$
→ (*p*, *p*^{*}) ∈ {(25, 5), (50, 10), (100, 20)}

▶ Noise to Signal ratio: $\mathbb{V}(\epsilon)/\mathbb{V}(y) \in \{0.1, 0.01\}$

N = 100 replications considered for each case.

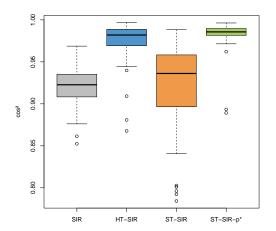

H. Lorenzo

The SIR model	Thresholdings	Example 000	Simulations 000000	Conclusion o	References	Appendix O
Simulation	ons with n	= 500, <i>p</i>	o = 25, p*	= 5, NTS	ratio= 0.1	
Comparison o	of <i>cos</i> ²					



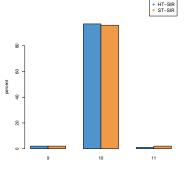
The SIR model	Thresholdings	Example 000	Simulations 00●0000	Conclusion O	References	Appendix O
Simulatio	ons with n	= 500, p	o = 25, p* ⊧	= 5, NTSr	atio= 0.1	

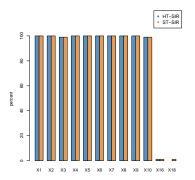
Selection performances



(a) Size of the reduced model

(b) Variables selected in the reduced model

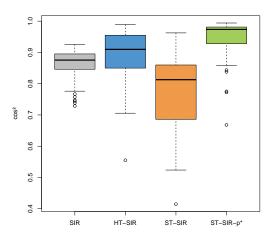

The SIR model	Thresholdings	Example 000	Simulations 000●000	Conclusion O	References	Appendix o
Increase Comparison o	p from 28	5 to 50 a	and p* fro	om 5 to 1	10	


		+- FO -			2	
00	0000	000	0000000	0		0
The SIR model	Thresholdings	Example	Simulations	Conclusion	References	Appendix

Increase p from 25 to 50 and p^* from 5 to 10

Selection performances

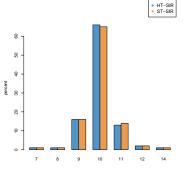
(a) Size of the reduced model

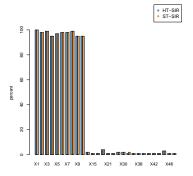


(b) Variables selected in the reduced model

The SIR model	Thresholdings	Example	Simulations	Conclusion	References	Appendix
00	0000	000	0000000	0		0

Decrease *n* from 500 to 300


Comparison of cos²


The SIR model	Thresholdings	Example	Simulations	Conclusion	References	Appendix
00	0000	000	000000	0		0

Decrease *n* from 500 to 300

Selection performances

(a) Size of the reduced model

(b) Variables selected in the reduced model

The SIR model	Thresholdings	Example 000	Simulations 0000000	Conclusion ●	References	Appendix O	
Concluding remarks							

- No significant difference in variable selection between HT-SIR and ST-SIR.
- Efficient for p < n for the two approaches.</p>
- Bootstrap could stabilize the results and make them more robust (under investigation).
- Other thresholding methods (such as SCAD) could also offer interesting results (under investigation)
- An R package is under development!

The SIR model	Thresholdings	Example 000	Simulations	Conclusion O	References	Appendix O
Reference	ces I					

Duan, N. and K.-C. Li (1991). "Slicing regression: a link-free regression method". In: *The Annals of Statistics* 19, pp. 505–530.

The SIR model	Thresholdings	Example	Simulations	Conclusion	References
00	0000	000	0000000	0	

Appendix

Choose the optimal lambda - Exemple 1

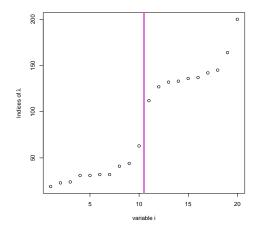


Figure: Index of the lambda from which the variable i is useless

Appendix