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Figure 1: A Variational Auto-Encoder (VAE) is trained on the Z-shaped data distribution living in the input space X. The VAE
encoded a lower-dimensional representation of the data into the two-dimensional latent space Z (middle). An approximation
M𝑧 of a Riemannian metric is computed on the latent space using the mean and variance functions of the generator 𝑓 : Z → X
(right). Thanks to a well-behaved variance function based on a Radial Basis Function neural network, we obtain a meaningful
curvature of the latent space allowing the computation of geodesics on the data manifold.

ABSTRACT
This report provides an in-depth analysis of the paper "Latent Space

Oddity: On the Curvature of Deep Generative Models" [2]. It ex-

plores the author’s approach of using Riemannian geometry to

understand and manipulate the latent spaces of Variational Autoen-

coders (VAEs). The non-linearity of the generator (or decoder) of

these models results in a latent space that presents a distorted rep-

resentation of the input space. The study addresses this distortion

by characterizing it with an approximation of a Riemannian metric,

that benefits from an original generator architecture designed to

enhance the accuracy of variance estimates. The report examines

the theoretical foundations and methodologies proposed for esti-

mating the curvature in the latent space of these models. We further

deepen our analysis through experiments showcasing the efficacy

and relevance of the method, concluding with a discussion on its

potential limitations. Our code is publicly available on GitHub

https://github.com/Clement-W/ latent_space_oddity_MVA.

1 INTRODUCTION
Deep generative models, particularly Variational Autoencoders

(VAEs) [11], have revolutionized the field of unsupervised learn-

ing, providing profound insights into the intricate world of data

generation. The paper we studied here [2] delves into the nuanced

exploration of the latent spaces, and especially the VAEs, through

a Riemannian geometry perspective. A significant aspect of this

study is the exploration of the latent space in VAEs, particularly for

the purpose of image interpolation. The capability to interpolate

between different images by traversing the latent space provides

an avenue for understanding and visualizing how VAEs perceive

and reconstruct data, offering a tangible perspective on the model’s

internal representations.

The VAE’s edge over traditional Auto-Encoders (AEs) lies in its prob-

abilistic approach to encoding inputs into latent space.Whereas AEs

learn deterministicmappings, VAEs benefit from the re-parametrization

trick [11] and take into account the data distribution, leading to a

more robust and interpretable latent space. This characteristic is

particularly beneficial for tasks that require a deeper understanding

of the data structure, like interpolation or generative tasks. The

architecture of a VAE is composed of two primary components:

the encoder and the decoder (also called the generator). The en-

coder, denoted as 𝑞𝜙 (𝑧 |𝑥), maps the input data 𝑥 ∈ X with X = R𝐷

to a latent distribution in Z = R𝑑 characterized by parameters

such as mean 𝜇𝜙 and variance 𝜎2
𝜙
that are neural networks. The

decoder 𝑓 attempts to reconstruct the input data 𝑥 from the latent

representation 𝑧:

𝑥 ≈ 𝑓 (𝑧) = 𝜇𝜃 (𝑧) + 𝜎𝜃 ⊙ 𝜖
with the mapping functions (that are neural networks) 𝜇𝜃 : Z → X
generating a surface in X, and 𝜎𝜃 : Z → R𝐷+ capturing the un-

certainty of the reconstruction. The random vector 𝜖 follows a

standard normal distribution, which allows the sampling from the

latent distribution when applying the re-parametrization trick. The
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likelihood can also be defined as sampling a Gaussian distribution

𝑝𝜃 (𝑥 |𝑧) = N(𝑥 ; 𝜇𝜃 (𝑧), I𝐷𝜎2𝜃 (𝑧)).

Some previous work already explored the geometrical structure

of probabilistic generative dimensionality reduction models using

tools of Riemannian geometry [17]. Similarly to the approach of

[2], they treat the latent variable model as a Riemannian manifold

and use the expectation of the Riemannian metric to define inter-

polation paths and measure distance between latent points. At the

same time as [2] was conducting their research, studies by [4] and

[15] were also exploring similar themes in the field. The authors

of [4] approach the estimation of Riemannian geometry in latent

variable models by using an importance-weighted autoencoder

(IWAE) framework [3] that allows modeling more complex data

distributions. They approximate the shortest path on the manifold

using a neural network, in particular by parametrizing a curve in

the latent space with distances measured based on the generative

model’s distortions. The authors of [15] present algorithms for com-

puting geodesic curves, providing an intrinsic measure of distance

on the Riemannian manifold learned by deep generative models.

Surprisingly, their experiments suggest that manifolds learned by

VAEs have little curvature, indicating that linear paths in latent

space closely approximate geodesics on the generated manifold.

According to our analysis and our experiments these findings could

be due to the absence of meaningful variance estimation. The paper

presented in this report is mainly based on [17], and applies the

same theorems in the context of VAEs, in particular by introducing

a Radial Basis Function Neural Network [14] to model the variance

of the decoder, which leads to an accurate estimation of the curva-

ture of the latent space as one can see in Figure 1.

In Section 2.1, we explore how data distributions in Variational

Autoencoders (VAEs) can be conceptualized as high-dimensional

manifolds, highlighting the role of the generator’s Jacobians in

shaping the latent space. Section 2.2 delves into the challenges and

novel approaches for integrating Riemannian geometry with the

stochastic nature of VAE generators. We present a theorem for

estimating a Riemannian metric, adapting it to the stochasticity

inherent in VAEs. In Section 2.3, we critique traditional variance ap-

proximations in VAEs and introduce a refined method using Radial

Basis Function (RBF) for more accurate variance modeling, crucial

for the latent space’s geometry. Section 3, presents the results of

our experiments with the Fashion-MNIST dataset, demonstrating

the practical benefits of the theoretical developments in improving

latent interpolations and data representation. Section 4, offers a

critical analysis of our findings, discussing their significance, po-

tential limitations, and applicability to various domains. Section

5, contextualizes our study within the existing body of research,

highlighting how more recent research papers deal with the latent

space of generative models andmade improvements to its geometric

interpretation. Finally, we conclude this study in Section 6.

2 MAIN CONTENT OF THE PAPER
2.1 Geometric interpretation of representation

learning
According to the manifold hypothesis [7], high-dimensional data,

despite its apparent complexity, often adheres to a simpler under-

lying structure, typically represented as a manifold, or a lower-

dimensional surface embedded within the larger dimensional space.

Performing computations within these high-dimensional environ-

ments presents significant challenges. A practical approach is to

parameterize the surface in X by a low-dimensional variable z ∈ Z
created with a suitable smooth generator function 𝑓 : Z → X. This

generator defines a surface in the input space from a latent repre-

sentation which remains difficult to interpret in terms of geometry.

It can easily be shown that the natural distance inZ is changing

locally as it depends on the Jacobian of the generator. For a latent

point z and Δz1, Δz2 infinitesimal distances. By Taylor’s theorem

we have 𝑓 (z + Δz1) ≈ 𝑓 (z) + Δz1 𝐽z with 𝐽z =
𝜕𝑓
𝜕z

���
z=z

. Hence we

compute the squared distance as:

∥ 𝑓 (z + Δz1) − 𝑓 (z + Δz2)∥2 ≈ ∥(Δz1 − Δz2) 𝐽z∥2

= (Δz1 − Δz2)⊤ (𝐽⊤z 𝐽z) (Δz1 − Δz2)

As distances in Z depend on 𝐽𝑧 , the latent space cannot be consid-

ered as an Euclidean space but rather as a curved space. Hence, to

compute distances on the high-dimensional input space, it makes

sense to seek the shortest curve 𝛾𝑡 : [0, 1] → Z in the latent space.

As the low-dimensional spaceZ is not equipped with an explicit

metric, the length in the input space can be measured by mapping

the shortest curve through the generator 𝑓 . The curve 𝛾𝑡 has length∫
1

0
¤𝛾𝑡𝑑𝑡 with ¤𝛾𝑡 = 𝑑𝛾𝑡

𝑑𝑡
. Thus, we measure lengths in the input space

with:

Length[𝑓 (𝛾𝑡 )] =
∫

1

0



 ¤𝑓 (𝛾𝑡 )


 𝑑𝑡 = ∫

1

0



𝐽𝛾𝑡 ¤𝛾𝑡 

 𝑑𝑡, 𝐽𝛾𝑡 =
𝜕𝑓

𝜕𝑧

����
𝑧=𝛾𝑡

=

∫
1

0

√︃
(𝐽𝛾 ¤𝛾)⊤ (𝐽𝛾 ¤𝛾) 𝑑𝑡

=

∫
1

0

√︃
¤𝛾⊤M𝛾 ¤𝛾 𝑑𝑡, M𝛾 = 𝐽⊤𝛾 𝐽𝛾

Hence, the length of the curve along the surface onX can be directly

computed in the (curved) latent space using the locally defined norm√︁
¤𝛾⊤M𝛾 ¤𝛾 . We can then define the distance between two points z1,

z2 as the length of the shortest curve connecting these two points

on the manifold, which we call a geodesic:

𝛾
(geodesic)
𝑡 = argmin

𝛾𝑡

Length[𝑓 (𝛾𝑡 )], 𝛾0 = 𝑧0, 𝛾1 = 𝑧1 .

When the generator function is smooth enough,M𝛾 represents a

smoothly changing inner product. In that context, we can define

M𝛾 : Z → R𝑑𝑥𝑑 (with 𝑑 the dimension of Z) as a Riemannian

metric, i.e. a smooth function that assigns a symmetric positive

definite matrix to any point in Z. Nonetheless, when dealing with

generative models, it is common to encounter stochastic generators.

This aspect necessitates adjustments to the Riemannian framework

to ensure its suitability and effectiveness in these contexts.

2



2.2 A Riemannian perspective to stochastic
generators

The decoder 𝑓 : Z → X of the VAE maps the latent space to the

input space is a generator, which we define as follows:

𝑓 (𝑧) = 𝜇𝜃 (𝑧) + 𝜎𝜃 (𝑧) ⊙ 𝜖 (1)

This method of characterizing the VAE decoder through both mean

and variance offers a somewhat unconventional yet effective means

for a more explicit and adaptable representation of the data distribu-

tion generated by the model. This can be particularly beneficial in

scenarios where the data distribution is complex, or when it is essen-

tial to model distinct uncertainties in data generation. Because of 𝜖 ,

the generator function 𝑓 is not deterministic but stochastic, which

means that the direct use of the Riemannian metricM𝑧 = 𝐽
𝑇
𝑧 𝐽𝑧 is

not feasible. The following theorem focuses on obtaining an approx-

imation of this Riemannian metric in the context of our stochastic

generator.

Theorem 1. If the stochastic generator 𝑓 has mean and variance
functions that are at least twice differentiable, then the expected metric
equals

M𝑧 = E𝑝 (𝜖 ) [M𝑧] = (𝐽 (𝜇 )𝑧 )𝑇 (𝐽 (𝜇 )𝑧 ) + (𝐽 (𝜎 )𝑧 )𝑇 (𝐽 (𝜎 )𝑧 )

where 𝐽 (𝜇 )𝑧 and 𝐽 (𝜎 )𝑧 are the Jacobian matrices of the mean and
variance functions.

Proof. We have 𝐽𝑧 =
𝜕𝑓 (𝑧 )
𝜕𝑧 with 𝑓 (𝑧) defined in equation 1. By

denoting 𝐴 = 𝐽
(𝜇 )
𝑧 and 𝐵 the Jacobian of 𝜎 (𝑧) ⊙ 𝜖 with respect to 𝑧,

we have:

M𝑧 = E𝑝 (𝜖 ) [M𝑧] = E𝑝 (𝜖 ) [(𝐴 + 𝐵)𝑇 (𝐴 + 𝐵)]

= E𝑝 (𝜖 ) [𝐴𝑇𝐴 +𝐴𝑇𝐵 + 𝐵𝑇𝐴 + 𝐵𝑇𝐵]

Since 𝐴 is not random, we have: E𝑝 (𝜖 ) [𝐴𝑇𝐴] = (𝐽 (𝜇 )𝑧 )𝑇 (𝐽 (𝜇 )𝑧 ). By
the linearity of expectation and considering thatE[𝜖] = 0, we obtain

E[𝐴𝑇𝐵] = E[𝐵𝑇𝐴] = 0. Expanding the expression E𝑝 (𝜖 ) [𝐵𝑇𝐵] and
knowing that𝑉𝑎𝑟 [𝜖] = 𝐼𝐷 , we ultimately derive that E𝑝 (𝜖 ) [𝐵𝑇𝐵] =
(𝐽 (𝜎 )𝑧 )𝑇 (𝐽 (𝜎 )𝑧 ) □

As explained in Section 2.1, forM𝑧 to qualify as a Riemannian

metric, it is required to be smooth, which necessitates that both

𝜇𝜃 and 𝜎𝜃 are 𝐶1
functions. In appendix A of [2] the calculation of

the geodesics differential equation necessitates differentiating M𝑧 ,

which implies that the mean and variance functions must be twice

differentiable as stated in the previous theorem.

One advantage to be noted here is that defining such an approxima-

tion of the Riemannian metric does not require any specific training

as it is directly derived from the parameters of the generator.

2.3 Meaningful variance functions to ensure
proper geometry

The geometry of the latent space, as we define it, is influenced by

the mean and variance parameters of the generator via the metric

M𝑧 . This metric is crucial for calculating geodesics in this space. The

concept of the length of a path is here defined byM𝑧 , that is, by the

Jacobian of the mean and variance of the decoder. This implies that

significant changes in variance estimation of the VAE will greatly

impact the path length. The variance of the generator, defined as

a ’classical’ neural network, should provide good estimations in

regions close to the data. However, predicting the behavior of this

variance outside the data support is challenging. Moreover, previ-

ous work ([20], [6], [16]) showed that neural networks cannot be

guaranteed to extrapolate effectively outside the support of the data

distribution. Hence, practical variance estimates with 𝜎𝜃 in regions

without data are uninformative. Ideally, the variance estimation

must match the distribution of the data, and the uncertainty must

grow by moving away from the data. To meet these two conditions,

the authors suggest modeling the precision 𝛽𝜓 (𝑧) = 1

𝜎2

𝜓

using a

Radial Basis Function Neural Network (RBFNN) [14]. The RBFNN

can be expressed as:

𝛽𝜓 (𝑧) =𝑊𝑣 (𝑧) + 𝜉

with 𝑣𝑘 (𝑧) = exp

(
−𝜆𝑘 ∥𝑧 − 𝑐𝑘 ∥22

)
, 𝑘 = 1, . . . , 𝐾𝑟𝑏𝑓 ,

and𝑊 ∈ R𝐷×𝐾𝑟𝑏𝑓

+∗ the positive weights, and 𝜉 as positive constants

to prevent division by zero. As depicted in Figure 2, the 𝑐𝑘 are the

centers of the 𝐾𝑟𝑏𝑓 radial basis functions. To obtain these centers,

𝑐1

𝑐2

𝑐3

𝜆1

𝜆2

𝜆3

𝑥

𝑦

Figure 2: Illustration of multiple Radial Basis Function (RBF)
centers on a 2D grid. Each center 𝑐𝑘 has an associated influ-
ence radius determined by 𝜆𝑘 . The concentric circles repre-
sent level sets of the RBF’s intensity.

the training dataset is fed into the encoder of the VAE to obtain its

latent space representations. Subsequently, a K-Means clustering

algorithm is applied to these latent representations to determine the

cluster centers 𝑐𝑘 and their corresponding cluster groups 𝐶𝑘 . The

𝜆𝑘 corresponds to the bandwidths of the𝐾𝑟𝑏𝑓 radial basis functions,

and are defined as:

𝜆𝑘 =
1

2

©­« 𝑎

|𝐶𝑘 |
∑︁
𝑧 𝑗 ∈𝐶𝑘

∥𝑧 𝑗 − 𝑐𝑘 ∥2
ª®¬
−2

with 𝑎 ∈ R+ the curvature hyperparameter. As depicted in Figure

2, the 𝜆𝑘 corresponds to the radius of influence of the associated

center 𝑐𝑘 . Finally, the weights 𝑊 are optimized with projected
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gradient descent on the mean square error between the standard

variance estimation and the inverse of the output of the RBFNN.

This allows us to obtain the desirable properties of the variance

function with the correct range for the variance estimation. The

precision 𝛽𝜓 can be seen as akin to a Dirac delta function when

𝑎 tends to 0. It exhibits its highest values at the cluster centers,

and these values progressively approach 0 as the distance increases

from these central points. Since the clusters are situated in areas

of the data space with high data density, the variance 𝜎2
𝜓
, which is

the inverse of precision, aligns closely with the data distribution.

This alignment results in a gradual increase in variance as one

moves away from these densely populated data zones. Overall, the

RBFs can be interpreted as a Gaussian mixture model where 𝐾𝑟𝑏𝑓

corresponds to the number of Gaussians, and 𝑎2 is a multiplicative

factor of the covariances.

3 CONDUCTED EXPERIMENTS
In order to assess the correctness of the method, we re-implemented

a significant portion of the proposedmethod to test it in different set-

tings. Our code is available on GitHub: https://github.com/Clement-
W/ latent_space_oddity_MVA. The codebase provided by the authors
of the original paper [1] has been used for computing geodesics

according to a metric tensor. For these experiments, we used the

Fashion-MNIST [18] dataset which consists of 28x28 grayscale im-

ages associated with a label from 10 classes. This dataset is more

challenging than MNIST [5] which is used in the experiments of

the original paper. To facilitate visualization of the latent space,

we restricted the dataset to 3 classes (0: T-shirt/top, 1: Trouser, 7:

Sneaker) which makes up a dataset of 18 000 images.

3.1 Training procedure
The following experiments were conductedwith a VAEwith smooth

activation functions as detailed in table 1.

Hyperparameters Value
Input Dimension 28 × 28

Layer dimensions of the encoder 64, 32

Layer dimensions of the decoder 32, 64

Latent Space Dimension 2

Hidden Layer Activation Tanh

Encoder Output (𝜇𝑧 ) Activation Identity

Encoder Output (log(𝜎2𝑧 )) Activation Softplus

Decoder Output (𝜇𝑥 ) Activation Sigmoid

Decoder Output (log(𝜎2𝑥 )) Activation Softplus

Table 1: VAE Hyperparameters

This model was trained on 800 epochs with a batch size of 128

using the Adam optimizer [10] and a learning rate of 8 × 10
−5

. The

loss function assumes a Gaussian prior and posterior for the latent

space and follows the variational lower bound presented by [11]:

LVAE = 𝑃 (𝑋 |𝑍 ) + 𝑟 ·𝑄 (𝑍 |𝑋 ) + 𝑟 · 𝑃 (𝑍 )

Where𝑋 corresponds to the observed data,𝑍 are the latent variables

and we have:

• the reconstruction loss 𝑃 (𝑋 |𝑍 ), which measures the likeli-

hood of the data given the latent variables:

𝑃 (𝑋 |𝑍 ) = 1

2

𝑁∑︁
𝑖=1

(
𝐷 · log(𝜎2𝑥 )𝑖 +

∑𝐷
𝑗=1 (𝑥 𝑗𝑖 − 𝜇𝑥 𝑗𝑖 )

2

𝜎2𝑥

)
where 𝑁 is the number of samples, 𝐷 is the dimensionality

of the data, 𝜎2𝑥 is the variance of the reconstructed data, and

𝜇𝑥 is the mean of the reconstructed data from the decoder;

• the KL divergence term𝑄 (𝑍 |𝑋 ), which acts as a regularizer

by measuring the divergence between the approximate

posterior and the prior distribution of the latent variables:

𝑄 (𝑍 |𝑋 ) = −1

2

𝑁∑︁
𝑖=1

log(𝜎2𝑧 )𝑖

where 𝜎2𝑧 is the variance of the latent variables as encoded

by the encoder;

• the prior term 𝑃 (𝑍 ), which promotes the distribution of the

latent variables to match the prior distribution:

𝑃 (𝑍 ) = 1

2

𝑁∑︁
𝑖=1

(
𝑑∑︁
𝑘=1

𝜇2𝑧𝑘𝑖
+ 𝜎2𝑧

)
where 𝑑 is the dimensionality of the latent space, 𝜇𝑧 is the

mean of the latent variables, and 𝜎2𝑧 is their variance.

Note that we worked with the log variance for numerical stabil-

ity and to ensure the positivity of the variance. A scaling factor 𝑟

was used at the beginning of the training to allow an unrestricted

exploration of the latent space. This scaling factor was incremen-

tally increased, thereby slowly imposing the Gaussian prior and

posterior constraints. The scaling reached 𝑟 = 1 at one-third of

the training duration, remaining at this level for the remainder of

the training process. After training the VAE, we trained several

RBFNNs with different values for the curvature parameter 𝑎 and the

number of centroids 𝐾𝑟𝑏𝑓 , by following the procedure described in

Section 2.3.

3.2 Results and study of the variance estimation
This section presents an analysis of the data representation and

variance estimation in the latent space of VAEs using an RBFNN.

Figure 3 illustrates the VAE’s ability to disentangle and encode

input data into a coherent and organized two-dimensional latent

space. The decoded reconstructions reveal how the mean output

of the decoder changes according to variations along the latent

dimensions. The encoded data in the latent space shows distinct

clusters, which indicates the effectiveness of VAEs in learning the

data manifold. Figure 4 represents the (log) variance estimation

of the decoder of the VAE, projected into the latent space. It high-

lights areas of the latent space where the model is more or less

certain about the reconstructed inputs, which shows how poorly

the variance is estimated. Comparing with the points in the latent

space shown in Figure 3, we observe that the area where the de-

coder is strongly confident is not accurate. Furthermore, the area

of high uncertainty located between the green and blue (sneakers

and t-shirt classes) points seems not to closely reflect actual un-

certainty. Figure 5 extends our analysis to the variance estimated

4
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Figure 3: Visualisation of encoded input data points in the
two-dimensional latent space (right) and the corresponding
decoded image for 10 × 10 regular points in the latent space
(left).

Figure 4: Visualization of the logarithm of the summed stan-
dard deviation log(∑𝐷

𝑗=1 𝜎 𝑗 (𝑧)) across the latent space. Each
point on the contour plot corresponds to the collective vari-
ance at that location, estimated by the VAE’s decoder. The
color intensity represents the magnitude of variance, with
cooler colors indicating lower variance and warmer colors
signifying higher variance.

by the RBFNN. Without focusing too much on the different pa-

rameters, we first observe that the use of the RBFNN allowed to

model the variance and the uncertainty more accurately. The left

column of images displays how the curvature parameter 𝑎 affects

the model’s uncertainty in its estimation. Lower values of 𝑎 depict

a more concentrated estimation of variance around the RBF centers,

while higher values distribute this estimation more diffusely across

the space. This was expected as the variance is inversely propor-

tional to 𝑎. In contrast, the right column explores the effect of the

number of RBF centers 𝐾𝑟𝑏𝑓 . A small number of centroids create

a coarse estimation of the variance (similar to underfitting), while

increasing this number is observed to refine the model’s discern-

ment of high-variance regions. When 𝐾𝑟𝑏𝑓 is too large (𝐾𝑟𝑏𝑓 = 128

in Figure 5) we observe a behavior similar to overfitting, where

some clusters were assigned to uncertainty regions associated with

a few points that do not represent the actual distribution of the

𝑎 = 0.5 𝐾𝑟𝑏𝑓 = 16

𝑎 = 1 𝐾𝑟𝑏𝑓 = 64

𝑎 = 3 𝐾𝑟𝑏𝑓 = 128

Figure 5: Visualization of variance estimation using
an RBFNN across different configurations by plotting
log(∑𝐷

𝑗=1 𝜎 𝑗 (𝑧)). The first column illustrates the effect of vary-
ing the curvature parameter 𝑎 while keeping 𝐾𝑟𝑏𝑓 fixed at 64.
The second column shows the impact of varying 𝐾𝑟𝑏𝑓 while
keeping 𝑎 fixed at 1.25.

data. To reflect the variance in a correct way, it seems that one must

find a balanced number of clusters, with a curvature parameter

that provides a relevant diffusion of the uncertainty around the

clusters. From our experiments, an RBFNN with 𝐾𝑟𝑏𝑓 = 64 and

𝑎 = 1.25 provides a good estimation of the variance (corresponds

to the row-2 column-2 subfigure in Figure 5). Overall, as stated in

section 2.3, we observe that the RBFNN shows similar behavior to

a Gaussian mixture model with 𝑎 scaling the covariance matrix and

𝐾𝑟𝑏𝑓 controlling the number of Gaussian distributions.

3.3 Meaningful interpolations in the latent
space

In this section, we analyzed if the approximation of the Riemannian

metric could provide more meaningful interpolations compared to

the Euclidean metric. Using the same VAE, with an RBFNN with

𝐾𝑟𝑏𝑓 = 64 and 𝑎 = 1.25, we computedM𝑧 and displayed the mea-

sure of the latent space on Figure 6. Moreover, the shortest path be-

tween two points in the latent space is computed using an Euclidean

metric (linear interpolation) and the Riemannian metric (leading

to a geodesic). To compute the geodesics in practice, we used a

graph solver based on a K-nearest-neighbors (KNN) graph that

approximates the manifold’s structure. The shortest discrete path
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(a) Measure of the latent space with the Riemannian metricM𝑧

(b) Images generated by traversing the geodesic curve

(c) Images generated along a straight-line interpolation

Figure 6: Heatmap visualization of the Riemannian met-

ric, indicated by
√︃
𝑑𝑒𝑡 (M𝑧) computed with an RBFNN with

𝐾𝑟𝑏𝑓 = 64 and 𝑎 = 1.25. Superimposed on this heatmap are two
distinct paths: the solid line represents the geodesic curve,
which is the shortest path in the manifold’s curved geom-
etry, while the dashed line illustrates the straight-line or
Euclidean interpolation between two points in the latent
space (a). The sequences of images below (b and c) are the
VAE’s output corresponding to points along these paths. The
upper sequence (b) follows the geodesic trajectory, while the
lower sequence (c) aligns with the Euclidean interpolation.

is first computed on the graph, then this discrete path is smoothed

using a heuristic method. Finally, a cubic spline is used to interpo-

late the points on the smoothed path, creating a continuous curve

approximating the geodesic.

Figure 6 highlights the capacity of the Riemannian metric, derived

from the mean output of the VAE’s decoder and the RBFNN, in

capturing the curvature of the latent space. By definition

√︃
det(M𝑧)

is the geometric volume measure that captures the volume of an

infinitesimal area in the input space. Plotting this measure allows

to visualize the curvature of the latent space based on the new

estimation of the variance of the RBFNN. We observe that the mea-

sured distances are large in regions of the latent space where the

generator is highly uncertain. This comes from the variance term

(𝐽 (𝜎 )𝑧 )𝑇 (𝐽 (𝜎 )𝑧 ) of M𝑧 which is large in regions of the latent space

where the generator has large variance. Hence the shortest path be-

tween two points in the latent space tends to avoid these regions as

𝑎 = 3 and 𝐾𝑟𝑏𝑓 = 64 𝑎 = 1.25 and 𝐾𝑟𝑏𝑓 = 128

Figure 7: Comparative Visualization of Geodesic Paths in
VAE Latent Spaces with "extreme" values for the RBFNN
Parameters.

we can see with the geodesic in the same figure. When generating

the samples along the shortest paths according to the Riemannian

and Euclidean metric in Figure 6 (b) and (c), we observe that the

Riemannian interpolant gives smoother changes in the generated

image. The shoe slowly deforms into pants, then into a t-shirt as

it follows the area of low variance. However using a simple linear

interpolation without paying attention to the curvature of the latent

space gives an abrupt transition in the interpolation between the

shoe and the t-shirt, which cannot be desirable depending on the

application. For example, in the case of a VAE that aims to learn to

reconstruct the image of an organ, Euclidean interpolation tends to

generate data that does not respect the real physics of that organ,

whereas Riemannian interpolation aims to recreate images that are

closer to those it has learned about.

We can also explore the geodesic paths on VAE with RBFNN that

have "extreme" values for their hyperparameters 𝑎 and 𝐾𝑟𝑏𝑓 . Figure

7 shows the metricM𝑧 computed with two different RBFNNs but

with the same VAE. We observe an expected behavior according

to the variance estimations shown in Figure 5. The left image of

Figure 7 shows the measure of the latent space with the parame-

ter 𝑎 set to 3. This leads to a very diffused measure which depicts

how this parameter influences the curvature of the space. Despite

this, the geodesic follows the areas of lowest variance as we would

expect. The right image of the same plot illustrates the geodesic

path with 128 centroids for the RBFNN. The phenomena of over-

fitting described in section 3.2 is clearly visible, where centroids

with a small number of assigned points are biasing the variance

estimation, thereby impacting the Riemannian metric. Thus, the

geodesic passes from below, which does not make sense when we

look at the distribution of points in the latent space in Figure 3.

Both geodesics in Figure 7 connect the same pair of points in the

latent space, highlighting the impact of the RBFNN parameters on

the geometrical structure of the latent manifold.

Furthermore, to confirm the obligation of having a meaningful

variance function to ensure proper geometry in the latent space,

Figure 8 displays the measure

√︃
det(M𝑧) using the VAE’s variance
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Figure 8: Heatmap visualization of the Riemannian metric,

indicated by
√︃
𝑑𝑒𝑡 (M𝑧) computed with the VAE’s variance

output.

output instead of the estimation of the RBFNN. This measure seems

not to be informative on the curvature of the latent space and does

not reflect the actual curvature coming from the data manifold.

3.4 Random walks in the latent space
Randomwalks are a standard technique for exploring high-dimensional

spaces, and are particularly useful in revealing the structure and

distribution of the data within these spaces. In this section, we

consider an unrestricted random walk with Brownian motion un-

der both Euclidean and Riemannian metrics, performed within the

latent space of the same VAE and RBFNN with hyperparameters

𝑎 = 1.25 and 𝐾𝑟𝑏𝑓 = 64. Two separate random walks are performed:

one that evolves according to the Riemannian metric of the latent

space, and another that moves in a standard Euclidean manner. For

each step of the Riemannian random walk:

(1) The metric tensorM𝑧 is computed at the current point zi,
representing the local geometry of the latent space at this

point.

(2) The eigendecomposition of M𝑧 is computed, yielding to

nonegative eigenvalues 𝐿 (asM𝑧 is positive semi definite)

and eigenvectors𝑈 .

(3) A random vector 𝜖 is sampled from a standard normal dis-

tribution, representing a random direction in the latent

space.

(4) The adjusted direction v = 𝑈𝐿−
1

2 𝜖 is computed, which

ensures that the step taken is consistent with the local ge-

ometry of the space, as dictated by the Riemannian metric.

(5) The current point is updated by taking a step in the direction

of v: zi = zi + 𝑠v, scaled by the step size 𝑠 .

For the Euclidean random walk, we simply move the current point

zi in the direction of the random vector 𝜖 , scaled by the step size.

Figure 9 shows the results obtained from the Euclidean and Rie-

mannian random walk. A key observation is the difference in be-

havior between random walks under the two metrics. Under the

Euclidean metric, the walks tend to drift freely, which leads it to re-

gions with little to no data support. This behavior contrasts with the

Riemannian random walk, which tends to stay within the bounds

Figure 9: Random walk on the latent space under both the
Riemannian and Euclideanmetric with 10000 steps and a step
size of 0.2.

of the data support. This is attributed to the variance term in the

Riemannian metric, which effectively forms a "wall" around the

data-rich regions, preventing the random walk from straying too

far into data-sparse areas, which reflects the curvature of the la-

tent space. An analogy can be drawn between this behavior and

the motion of an entity in a physical landscape. If we imagine the

latent space as a three-dimensional landscape of hills and valleys,

the red areas representing regions of high variance are akin to

steep, towering mountains, while the blue areas of low variance

are like comfortable valleys or flat plains where the physical entity

can move without strong constraints. Furthermore, these walls not

only contain the random walk but also influence the shortest paths

to align more closely with the data, creating a more meaningful

exploration of the latent space.

4 DISCUSSION
The paper we studied [2] demonstrates that adapting concepts from

[17] in the context of Variational Autoencoders (VAEs) addresses

the identified problem: enabling the computation of meaningful

geodesics in the latent space that corresponds accordingly with the

data distribution in the input space. More broadly, it establishes a

metric that provides insight into the data distribution of the latent

space according to the input space. The use of Radial Basis Function

Neural Networks for modeling the variance of the decoder effec-

tively solves the issues encountered when using a conventional

neural network. In particular, 8 supports our hypothesis about the

conclusion of [15] stating that the learned manifold has little curva-

ture. Using the VAE’s variance output to construct the Riemannian

metric leads to a relatively flat space in and out of the data support.
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In our experiments, we used simple datasets and two-dimensional

latent space, making it relatively easy to fine-tune the hyperparam-

eters 𝑎 and 𝐾𝑟𝑏𝑓 . However, while it is true that the latent space of

a VAE is typically of low dimension by design, in cases involving

more complex data, it is not uncommon to encounter latent spaces

with dimensions significantly higher than two. In such scenarios,

determining and effectively interpreting the effect of these hyper-

parameters can become challenging due to the lack of a graphical

representation. It is also worth noting that the use of the K-Means

algorithm could be questioned in these instances due to the curse of

dimensionality. To address this issue, one could consider identifying

clusters through a projection onto a space of even lower dimension

than the latent space.

The RBFNN is trained using a supervised learning approach. As

explained in Section 2.3, to learn the values of the new variance, the

RBFNN aims to learn from the variance values initially learned by

the VAE. However, this variance learned by the VAE has significant

flaws. The explanation of the RBFNN’s training as a supervised

learning approach in [2] was found to be somewhat unclear. There-

fore, we aim to provide a clearer exposition of this aspect in our

discussion. The initially learned decoder variance values are con-

sistent with the data, as they have been learned to reconstruct the

distribution of the input space. The errors stem from the variance

values outside of the data. Therefore, during the training of the

RBFNN, the goal is to achieve new variance values close to the pre-

vious ones in data-rich areas. The new variance values outside the

data support are defined to address the issues described in Section

2.3 about extrapolating the variance values.

A possible extension of this work that could replace the RBFNN is

the use of Neural fields [19]. Also known as coordinate-based neural

networks or implicit neural representations, these neural networks

are designed to learn continuous functions. In this context, the neu-

ral field would take latent space coordinates as input and output a

variance estimation. For training, one could create a loss function

that not only considers the difference between the model output

and the estimated variance of the VAE, but also incorporates the

distribution of data in the latent space for example by penalizing

low variance estimations in data-sparse regions. Finally, the neural

field would learn a refined variance estimation that aligns with

the data distribution in the latent space. These neural networks

are particularly effective for tasks involving high-dimensional data

and complex geometries. Experimenting with this approach would

clarify if neural fields could be a tangible alternative, and poten-

tially overcome some limitations of RBFNNs in challenging settings.

In the original paper, the authors discuss the quality of the ap-

proximation of the Riemannian metric by establishing a Theorem

(Theorem 2 in [2]), which makes reference to [17] for its proof. The

theorem states that lim𝐷→∞ Var(M𝑧) = 0. However, a review of

the latter source reveals that the theorem does not appear to be

explicitly stated or elaborated upon in that article.

Finally, we find it important to keep in mind that this work does not

aim to improve the performance of the reconstruction performed by

𝜇𝜃 . Additionally, this method imposes constraints on the initial ar-

chitecture of the VAE, requiring the activation functions of the VAE

to be twice differentiable to utilize Theorem 1. Depending on the

scenario, it may then be worthwhile to assess the trade-off between

the importance of using activation functions that do not meet this

condition and the benefits of incorporating this Riemannian metric.

We have experimented with various non-differentiable activation

functions such as ReLU and its variants to determine their impact

on this metric and have not observed any pathological behaviors.

It could therefore be interesting to test this in more complex cases

to see if this theoretical constraint holds in practice.

5 RECENT RELATEDWORK
In the landscape of generative models, the approach to latent space

manipulation varies significantly, particularly when comparing

Variational Autoencoders (VAEs) with other models like Genera-

tive Adversarial Networks (GANs) and Diffusion Models (DMs).

While the method presented in [2] offers a novel perspective on

manipulating the variance function in VAEs, its generalization to

other models poses certain challenges due to inherent structural

differences.

In DMs, a different approach is taken, as seen in [13]. This study

introduces the use of a pullback metric, leveraging the known ge-

ometry of the input space to derive a corresponding metric in the

latent space. Unlike the curvature-based method in VAEs, this ap-

proach does not rely on modifying the variance function but instead

utilizes the input space geometry to influence the latent space. This

method is particularly suited to DMs due to their unique generative

process, which differs fundamentally from that of VAEs.

The issue of interpolation and manipulation in GANs is closely

tied to their architectural design. [12] explores this by utilizing

the StyleGAN architecture, as detailed in [9]. In StyleGAN, certain

layers exhibit an approximately Euclidean geometry, in this case

meaning the latent space closely mirrors the image space. This

proximity allows for direct edits in the StyleGAN layers without

the necessity of employing Riemannian geometry. The approach

hinges on the unique architectural features of StyleGAN, where

latent space manipulation is more straightforward due to its design,

in contrast to the more complex latent space structures in VAEs.

A recent study in [8] is particularly relevant to the exploration

of latent space geometry in generative models. This work inves-

tigates the latent spaces of models like GANs and VAEs, which

are defined as a push-forward of a Gaussian measure by a con-

tinuous generator. The study focuses on how these models tend

to output samples outside the target distribution when learning

disconnected distributions. It explores the relationship between

model performance and latent space geometry and provides a theo-

retical framework for understanding the latent space’s geometry

and proposes a truncation method to improve GAN performance

by enforcing a simplicial cluster structure in the latent space.
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6 CONCLUSION
To conclude, we have studied an adaptation of a Riemannian frame-

work to the latent space of Variational Autoencoders. Introducing

an approximation of a Riemannian metric to measure the curvature

of the latent space according to the data manifold, shows the neces-

sity of having a meaningful variance estimation by the generator.

To this end, a Radial Basis Function neural network is trained to

replace the standard variance estimation of the Variation Autoen-

coder, which permits better extrapolation of the variance outside

the data support. We presented the theoretical aspects of this ap-

proach, showing that such method is sound, and experimented with

the method in different settings. We studied the behavior of the Ra-

dial Basis Function neural network with different hyperparameters,

which validated the theoretical analysis. Finally, we computed inter-

polations and studied the behavior of a random walk in the latent

space showing that the approximated Riemannian metric provides a

meaningful curvature in the latent space according to the input data

manifold. This Riemannian formalism enhances the understanding

and handling of the latent space of Variational Autoencoders. This

showcases the potential of Riemannian geometry in improving

generative models and offering an insightful perspective to future

explorations in this field.

REFERENCES
[1] Georgios Arvanitidis. 2021. geometric_ml: Author’s GitHub Repository. https:

//github.com/georgiosarvanitidis/geometric_ml. Accessed: 2023-12-07.

[2] Georgios Arvanitidis, Lars Kai Hansen, and Søren Hauberg. 2018. Latent Space

Oddity: on the Curvature of Deep Generative Models. arXiv:1710.11379 [stat.ML]

[3] Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. 2015. Importance weighted

autoencoders. arXiv preprint arXiv:1509.00519 (2015).
[4] Nutan Chen, Alexej Klushyn, Richard Kurle, Xueyan Jiang, Justin Bayer, and

Patrick Smagt. 2018. Metrics for deep generative models. In International Confer-
ence on Artificial Intelligence and Statistics. PMLR, 1540–1550.

[5] Li Deng. 2012. The mnist database of handwritten digit images for machine

learning research. IEEE Signal Processing Magazine 29, 6 (2012), 141–142.
[6] Kefan Dong and Tengyu Ma. 2022. First Steps Toward Understanding the Ex-

trapolation of Nonlinear Models to Unseen Domains. arXiv:2211.11719 [cs.LG]

[7] Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan. 2013. Testing the

Manifold Hypothesis. arXiv:1310.0425 [math.ST]

[8] Thibaut Issenhuth, Ugo Tanielian, Jérémie Mary, and David Picard. 2023.

Unveiling the Latent Space Geometry of Push-Forward Generative Models.

arXiv:2207.10541 [cs.LG]

[9] Tero Karras, Samuli Laine, and Timo Aila. 2018. A Style-Based Generator Ar-

chitecture for Generative Adversarial Networks. CoRR abs/1812.04948 (2018).

arXiv:1812.04948 http://arxiv.org/abs/1812.04948

[10] Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Stochastic Opti-

mization. arXiv:1412.6980 [cs.LG]

[11] Diederik P Kingma and Max Welling. 2013. Auto-Encoding Variational Bayes.

arXiv:1312.6114 [stat.ML]

[12] Xingang Pan, Ayush Tewari, Thomas Leimkühler, Lingjie Liu, Abhimitra Meka,

and Christian Theobalt. 2023. Drag your gan: Interactive point-based manipu-

lation on the generative image manifold. In ACM SIGGRAPH 2023 Conference
Proceedings. 1–11.

[13] Yong-Hyun Park, Mingi Kwon, Junghyo Jo, and Youngjung Uh. 2023. Un-

supervised Discovery of Semantic Latent Directions in Diffusion Models.

arXiv:2302.12469 [cs.CV]

[14] Qichao Que and Mikhail Belkin. 2016. Back to the future: Radial basis function

networks revisited. In Artificial intelligence and statistics. PMLR, 1375–1383.

[15] Hang Shao, Abhishek Kumar, and P. Thomas Fletcher. 2017. The Riemannian

Geometry of Deep Generative Models. arXiv:1711.08014 [cs.LG]

[16] Xinwei Shen and Nicolai Meinshausen. 2023. Engression: Extrapolation for

Nonlinear Regression? arXiv:2307.00835 [stat.ME]

[17] Alessandra Tosi, Søren Hauberg, Alfredo Vellido, and Neil D. Lawrence. 2014.

Metrics for Probabilistic Geometries. arXiv:1411.7432 [stat.ML]

[18] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-MNIST:
a Novel Image Dataset for Benchmarking Machine Learning Algorithms.
arXiv:cs.LG/1708.07747 [cs.LG]

[19] Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair

Khan, Federico Tombari, James Tompkin, Vincent Sitzmann, and Srinath Sridhar.

2022. Neural Fields in Visual Computing and Beyond. arXiv:2111.11426 [cs.CV]

[20] Keyulu Xu, Mozhi Zhang, Jingling Li, Simon S. Du, Ken ichi Kawarabayashi, and

Stefanie Jegelka. 2021. How Neural Networks Extrapolate: From Feedforward to

Graph Neural Networks. arXiv:2009.11848 [cs.LG]

9

https://github.com/georgiosarvanitidis/geometric_ml
https://github.com/georgiosarvanitidis/geometric_ml
https://arxiv.org/abs/1710.11379
https://arxiv.org/abs/2211.11719
https://arxiv.org/abs/1310.0425
https://arxiv.org/abs/2207.10541
https://arxiv.org/abs/1812.04948
http://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/2302.12469
https://arxiv.org/abs/1711.08014
https://arxiv.org/abs/2307.00835
https://arxiv.org/abs/1411.7432
https://arxiv.org/abs/cs.LG/1708.07747
https://arxiv.org/abs/2111.11426
https://arxiv.org/abs/2009.11848

	Abstract
	1 Introduction
	2 Main content of the paper
	2.1 Geometric interpretation of representation learning
	2.2 A Riemannian perspective to stochastic generators
	2.3 Meaningful variance functions to ensure proper geometry

	3 Conducted experiments
	3.1 Training procedure
	3.2 Results and study of the variance estimation
	3.3 Meaningful interpolations in the latent space
	3.4 Random walks in the latent space

	4 Discussion
	5 Recent related work
	6 Conclusion
	References

