Paper Study - A Texture Synthesis Model Based on
Semi-Discrete Optimal Transport in Patch Space

Clément Weinreich and Paul-Henri Pinart
Master MVA

January 13, 2024

Abstract

Texture synthesis is a technique that consists in generating some realistic textures by imitating
the patterns of a given exemplar texture. It plays a crucial role in many domains such as computer
graphics, where the synthesis quality directly impacts the visual quality and the realism of graphical
environments. The objective is to have a realistic replica in a visual sense but with original content:
we don’t simply want to copy parts of the original texture for the sake of visual quality and realism.
In this paper review, we will study the work of B. Galerne, A. Leclaire and J. Rabin [4] which uses
a patched-based method. The main novelty of the method is based on the use of semi-discrete
optimal transport - ie between a continuous and a discrete distribution- to reimpose the patch
distribution of the exemplar texture. The goal of this project is to provide quantitative measures
of the statistical properties of patches from the synthesis, and visually compare synthesis results
with and without constraints. We will also propose some extensions of the method and critically
discuss their effectiveness and results.

1 Introduction

One can define texture synthesis as the ability to create realistic and visually pleasing original tex-
tures based on an exemplar texture. A texture itself is an image that contains repetitions or patterns,
therefore giving some sense to the possibility of its synthesis. Texture synthesis aims to generate some
new content that should not be a copy of parts of the original texture but rather an extension that
captures well its visual characteristics and in a mathematical context, its statistical properties.

Texture synthesis plays a very important role in many domains like computer graphics, computer
vision, and image processing. In computer graphics, it is used to improve the realism of virtual envi-
ronments and provide a more immersive experience. One could for example think about the creation
of a virtual house where we would want a wooden texture for the walls and house tiles for the roof.
In computer vision, texture synthesis facilitates tasks such as object recognition and segmentation by
providing diverse and representative training data. Furthermore, in image processing, it finds applica-
tions in tasks such as image editing, inpainting, and denoising.

There exist different methods in the literature for such a task, but one of the main approaches
for texture synthesis is patch-based texture synthesis. Patches are small squares of pixels of an image
of fixed size, for example, 3 pixels by 3 pixels patches. This technique involves breaking down the
texture into smaller patches, and then synthesizing the target texture by wisely re-assembling these
patches. The synthesis is mainly guided by the statistical properties of the input texture, ensuring
that the generated texture has similar characteristics. This approach works reasonably well, as con-
jectured by Julesz in the 1980s [6]. In this article, Julesz introduces the term ”textons” to represent
basic visual elements that contribute to our perception of textures. Later, in 2000, Portilla and Si-
moncelli introduced a set of 710 statistical measures [7] sufficient to characterize a very large number
of textures. This brought a solid foundation for more advanced texture synthesis and analysis methods.

The successful results of the method of Galerne [4] are based, among other things, on two ma-
jor components: multiscale optimization and semi-discrete optimal transport. The first consists in

studying the texture at different scales (eg 4, 16, 64,... times smaller) and ensuring that the sta-
tistical characteristics are kept at each scale between the original texture and the synthesis. Then,
semi-discrete optimal transport is used to efficiently transport and redistribute sampled patches from a
continuous source distribution to the discrete target distribution. It benefits from a solid mathematical
framework and ensures that the synthesized texture adheres closely to the distribution of patches in
the exemplar texture.

The structure of this study is designed to provide a comprehensive understanding of the subject.
We begin by providing background information on the main mathematical areas essential to the topic.
This information is intended to facilitate the understanding of the method, which is described in detail
in the following section. Next, we propose and discuss some extensions to the method, and give a
critical overview. The study concludes with a presentation of numerical and graphical results, to
provide additional support for the concepts discussed.

2 Background

2.1 Semi-discrete optimal transport formulation

Optimal transport is the mathematical study of sending masses of one probability distribution to
another in an optimal way, ie by minimizing a certain transportation cost function. The notion of
semi-discrete optimal transport refers to the case where we compute the optimal transport between a
continuous probability measure and a discrete probability measure. More specifically, given a contin-
uous measure p and a discrete measure v = Zye 5 Vy0y (S finite set) on a metric space X = RY, the
goal is to find an optimal transport map that minimizes the total cost of moving mass from u to v.
We first define the push-forward measure which can be seen as a transport map in our case.

Definition 1 (Push-forward measure). The push-forward measure of a probability measure pu through
a measurable map T : X —), denoted Ty, is defined by

(Tyn)(A) = W(T71(A)) (1)
for any measurable set A C).

Monge’s initial problem formulation is based on push-forward measures, but the optimal transport
problem can be formulated using the Kantorovich formulation. This allows a convex relaxation of the
problem, which is expressed as follows:

min / c(x,y) dr(x,y) (2)
mell(p,v) XXX
Here, TI(p, v) is the set of probability measures on X x X with marginal distributions u, v, ¢(z,y)
is the cost function representing the transportation cost between x and y, and 7 is a transport plan.
One advantage of considering semi-discrete optimal transport is that the formulation above can be
simplified using its convex dual.

Proposition 1. Let’s assume as above that u is continuous and v = ZyES vy6y is discrete. Then
solving Kantorovitch’s formulation (2) is equivalent to considering biased nearest neighbor assignments,
namely :
T,(x) = argminc(z,y) — v(y) (3)
y€eS
Therefore, to find an optimal map T, we now have to find a "good” v. Once it is found, then
transport can be applied efficiently, with patches in our situation.

Remark 1. We can visualize this semi-discrete optimal transport when v = 0 in 2D with Voronoi
cells as shown in Figure 1. The dots correspond to the discrete measure dirac locations and the space
to the continuous measure. In our case, we do not have a simple nearest neighbor assignment in the
sense that the cost function c is biased with v.

Figure 1: Voronoi cells on a 2D surface.

Remark 2. In our problem, we do not have Voronoi cells anymore, but instead a power diagram
(also called Laguerre—Voronoi diagram or radical Voronoi tesselation). It generalizes the case where
the nearest neighbor assignment is biased. We define it in the following.

Definition 2. Suppose we have a map T, as defined in eq. (3). Then its preimages define a power
diagram, which is a partition of RP. For each point y € RP, it is defined as :

Pow,(y) = {z € RP|Vz € {S}, ||z — yl* — v(y) < |z — 2[]* — v(2)}. (4)

From now on, we will consider that the cost c¢ is of the form c(z,y) = || — y||*, although most
results are compatible with sufficiently smooth convex cost functions. For the next section, we also
define the c-transform v as v°(z) = minyegs c(x,y) — v(y).

2.2 Approximation of optimal transport maps

In the previous part, we have reduced the space of acceptable solutions of the semi-discrete optimal
transport to a biased nearest neighbor assignment defined in eq. (3). However, it is not yet optimal. We
need to optimize the bias v to minimize the transportation cost. This can be done using the following
theorem, which introduces a function H to maximize. We will then be able to apply gradient-based
methods to obtain an approximation of the optimal transport map.

Theorem 1. The solutions of the semi-discrete optimal problem defined in eq. (2) are of the form T,
(defined in eq. (3)), where v solves the concave optimization problem :

argmax H(v) where H(v)= /RD vé(x)dp(x) + Zv(y)uy (5)

s
veR yeSs

Furthermore, H is C' smooth and its gradient with respect to v(y) is given by

oH
St =~ / Py = Pow) + vy (6)

The formula above gives interesting features. In particular, we obtain a critical point with a
relatively simple closed form: v, = u(Pow,(y)). However, the main resulting issue is the high compu-
tational cost. Calculating the p-measures of each power cell is expensive, especially in high dimensions.
Therefore, stochastic optimization can be a more relevant alternative. The original paper even uses
ASGD (Average Stochastic Gradient Descent), which is a variation of SGD that reduces variance by
maintaining an average of past terms. This results in a smoother convergence with potential regular-
ization effects, allowing for a more stable optimization process. Furthermore, the additional memory
usage and computational complexity compared to SGD remain reasonable if one does not store all
previous samples.

Recall the definition of H given in eq. (5), then we define h : (z,v) — v°(x) + > v(y)v, which
yeSs

is the density of H w.rt. p: H(v) = E[h(X,v)]. Recalling the expression of the c-transform, the
gradient of h w.r.t. v is easy to compute :

Voh(z,w) = —er,

w

(x) TV

where where (e,) is the canonical basis of R®

Definition 3 (ASGD, [5]). Average Stochastic Gradient Descent is a variation of SGD that computes
the average of the past elements obtained by SGD. Initializing at o' = 0, we define the terms of the
sequence recursively :
k_ k=1, C k k-1 ko
{z ="+ \/Evzh(x ,2°7 1Y) where 2 ~ 7)

oF = (ot 4.+ 0k).

In this review, we will not delve into the convergence proof which is detailed in the original paper.
Instead, we will focus in the next part on the method, and then deepen our analysis by proposing
extensions and experiments.

3 Patch-based semi-discrete optimal transport for texture syn-
thesis

This section presents the stochastic texture synthesis model proposed by the authors, which is based
on transforming a Gaussian random field locally. Initially, the Gaussian random field is responsible for
the capture of the texture’s long-range correlations, excluding its structured geometric characteristics.
Subsequently, the model reintroduces geometric structures through a patch-based transformation. This
transformation is designed to be an approximate solution to a semi-discrete optimal transport problem,
which ensures statistical alignment with the exemplar texture. Finally, a multi-scale framework enables
the efficient synthesis of structured textures while maintaining statistical guarantees. This section
presents the framework in two steps. To begin with, we focus on the the first level of synthesis (coarse
scale), and then on the synthesis of the other scales which enables refinement and proper respect of
the exemplar texture’s structure.

3.1 Synthesis at coarse scale

Transport
T(x)

Patch recomp.
R(Py)

— I v
Py

U

Figure 2: mono-scale synthesis model: A source texton u is transformed with ADSN (Asymptotic
Discrete Spot Noise) to create a stationary Gaussian random field U that can be used as a continuous
distribution p. A semi-discrete optimal transport problem between the source distribution p and the
target discrete distribution v (which corresponds to the empirical patch distribution of u) is solved by
computing v thanks to ASGD (Average Stochastic Gradient Descent). The optimal map T, defined
in equation 3 is then applied to Py which gives the transformed patches Py, that can finally be
recomposed into an image using the operator R.

The first step of this synthesis can also be seen as a mono-scale version of the texture synthesis
model and is summarized in Figure 2. Let’s denote u : Q — R? the exemplar texture defined on a
domain Q) C Z2. The first step consists of modeling u as a stationary Gaussian random field U whose
first and second order moments are the empirical mean and covariance of the exemplar texture. For

this purpose, the Asymptotic Discrete Spot Noise (ADSN) is used ([2], [3]):
VeeZz? Ux)=1u+ Z tu(y)W(x —y) where

where % is the empirical mean of u and W is a normalized Gaussian white noise on Z2. One can easily
see that E[U] = @.

Proposition 2. The expectation of U is equal to the empirical mean of u, i.e., E[U] = @, and the
covariance of U corresponds to the autocorrelation function:

Cov(U(x),U(y)) = au(y—x) with a,(x) = Z tu(2)ty(z + 2)T.
z€Z2

Proof. The computation E[U] = @ is direct from the definition of U. For the covariance, let z,y € Q
we have

Co(U(2),U(y)) = E |(U(x) -) (U(y) —)"

= au(y —) (9)
O

The random field U has the correct correlations but no salient structures. To reimpose the statistics
of the exemplar texture on local features, a local transform 7' : RIw® _ RAw ig applied in the patch
space R* where w € N* corresponds to the patch size. This framework uses an optimal transport
map between the distribution of the Gaussian patches of U and the empirical patch distribution of the
exemplar texture is used. The source distribution p of this transport is U}, where w = {0, ..., w— 1}2
denotes the patch domain. As U is a stationary Gaussian random field, p corresponds to the distri-
bution of any Gaussian patch of U. Moreover, as the expectation and covariance of U are known, the
parameters of the Gaussian distribution p can be computed, which enables sampling the distribution

N(N(Ulw)a Z(Ulw))-

For the target measure of the transport, we consider the empirical distribution of patches in the
exemplar texture u. Let’s note P, = {U|g4.|7 +w C Q} the set of patches of u, the distribution vey,,

18
1
Vemp = ﬁ Z 5?‘ (10)
“! pep,

As texture images contain thousands of patches, it is impractical for ASGD-based optimal transport
regarding the computational cost. Thus, Ve, is approximated by the subsampled distribution

J

1
v=< Z Op,; (11)
j=1
where pi1,...,p; are J = 1000 patches drawn uniformly from P,. These samples are collectively

denoted by the set Y. When |P,| < 1000 there is no need to subsample S0 ¥ = Vepyp. Finally, p
and v are two probability measures on R%” The semi-discrete optimal transport from p to v can be
computed using ASGD as explained in section 2.2. The optimal set of weights v computed from ASGD
can then be used to compute the optimal patch assignment T" = T,,. In this context, the weighted
nearest neighbor assignment is defined by

T,(p) = argmin ||p—pj||2—vj. (12)
(Pj)i=1,...,7

The mapping T, is applied to Py, the set of patches of the synthesis U. This gives a new set of
transported patches Py. To form the final synthesis V', the patches of Py, are recomposed using a re-
composition operator that we define as R : RY xdw® _y RHxWxd Iy thig framework, the recomposition
operator corresponds to a simple averaging of the overlapping patches.

Definition 4. We note V() (x € Z2) the set of patches that overlap a certain pizel at position x and
Pz the value at position x of the pixel in the overlapping patch. Then the averaging operation is defined
as:

V@) = RIP@) = Y o (13)

peEV(2)

3.2 Synthesis at finer levels

The mono-scale model can be extended to a multi-scale model. The approach begins with Gaussian
synthesis at coarse scale as explained in section 3.1, and then iteratively applies local transformations
to reestablish the patch distributions across finer scales. To transition from one scale to another, a
simple upsampling method is applied: the upsampled patches correspond to the patches at the same
position of the previous scales, but twice larger.

Let us note u! the subsampled version of the original image at scales [= 0,...,L — 1, and ' the
approximation of the empirical patch distribution at scale [with associated samples Y. The subsam-
pled versions of u are obtained by successive bicubic subsampling of v = u° by a factor of 2. The
previous model presented in section 3.1 considers the synthesis at the coarsest scale [= L — 1. For
finer scales, a slightly different approach is adopted and illustrated in Figure 3.

Py

uf — L -]

vl

Previous Synthesis (AS@_’ 1)’
Py« [- TR il

neMM

> wiN (s,)

k=1

Patch recomp.
R(Py1)

@—» I [T [T

Ut

Figure 3: Synthesis at finer scales: The patches of the synthesis at the previous scale [+ 1 is
upsampled to obtain the current synthesis before transport U!. A Gaussian mixture model is estimated
on the set of patches Py which constitutes the continuous distribution ©*. On the other hand, the
empirical patch distribution /! of the downsampled exemplar texture u! is computed. As in the coarsest
scale, ASGD is used to compute v! and apply the optimal map T! to get the transported patches P‘l,.
Finally, the patches are recomposed to get the synthesis V! at that scale.

First, U’ is obtained by upsampling the patches of the previous synthesis P‘l,H. It is then used
to build the continuous measure for the semi-discrete optimal transport. Furthermore, instead of
the ADSN model, a Gaussian mixture model (GMM) with ngaas components is estimated with
the expectation-maximization algorithm to fit the patch distribution of U'. This GMM estimation
constitutes the probability measure u' on R” at this scale. As in the mono-scale version, ASGD is

used to compute the optimal transport map Tll) from ! to v!. Applying T on the patches of U’ (noted
Pyi) allows to get the transformed patches Pyi. The same patch recomposition operator R can then
be applied to form the synthesis V. This global strategy is applied for every scale except the coarsest
scale [= L — 1.

3.3 Multiscale synthesis framework

Coarse scale
processing

Larger scale

3
v processing

v? Larger scale

processing

Larger scale
processing

Figure 4: Multiscale framework: Synthesis on L = 4 scales from an exemplar texture. At the first
scale, the coarse synthesis method described in Figure 2 is used. On all the other scales, the method
described in Figure 3 is employed.

The global multiscale framework is illustrated in Figure 4, and allows to synthesize structured
textures efficiently. Starting from a well-chosen Gaussian random field, successive transformations
based on semi-discrete optimal transport are applied, which allows reimposing the patch distribution
at different scales, thus keeping statistical guarantees. It is important to note that this round of
synthesis constitutes the model estimation step. After the estimation for all scales [, the OT maps T
are stored to be used for the synthesis of possibly very large images.

4 Extensions

In this section, we will propose some extensions or modifications to the actual method. The goal is
to understand what factors lead to a successful synthesis and to see if computational time can be
reduced. Some extensions simply consist of modifying a specific part of the original algorithm (e.g.
the way we sample patches). Other extensions aim at modifying the structure of the algorithm itself
with a different transportation method, such as affine transport described in this section. We will
first describe those extensions, and discuss the obtained results in the next section with numerical and
graphical results.

4.1 Sampling random patches instead of Gaussian modeling
For patch sampling, the original method consists of creating another Gaussian model :

e At the first scale: estimating a Gaussian model out of the ADSN sampled patches which serves
as a sampling function for ASGD. Let u(U),,) and ¥(U},,) be the mean and covariance and X a
sample, then X ~ N (u(U)), 2(Uw))-

e At the other scales: fitting a Gaussian Mixture Model (GMM) u! with ngasar components (4 in
practice) adapted to the patches from the previous synthesis U!, and sample from it.

What we propose is to directly sample a random patch from the current synthesis U'. Noting Py
the finite set of patches of the current synthesis (before transport), then X ~ U(Py1), so X follows
a discrete uniform distribution. If for example the current synthesis before transport has dimension
128 x 128, then there are (128 — 2) x (128 — 2) = 15876 possible patches to sample from. It remains
in accordance with the principle of not copying patches from the original texture to have an original

synthesis. Furthermore, by construction, the synthesis U’ keeps the statistics of the previous synthesis
Vl+1 .

In this adaptation, we are facing a discrete optimal transport problem as the source distribution
1 is now a discrete uniform distribution, and the target distribution v remains identical to its initial
definition in equation 11. As u is not absolutely continuous anymore, we are now optimizing a slightly
different version of H(v) originally defined in equation 5.

Proposition 3. For y and v two discrete probability distributions with finite support S’ and S respec-
tively, the solution of the discrete optimal transport problem is obtained with the concave optimization
problem:

argmax H(v) where H(v)= Z v() e + Z v(y)vy (14)
veRS z€S’ yeS

Furthermore, H is C* smooth almost everywhere, and its gradient with respect to v(y) is given by

G > (15)

zEPowy, (y)

In this discrete setting, the optimization problem changes as the mass cannot be split. This
means that the power cells might not correspond exactly to the v-measure of the points. Instead, the
transportation plan would assign entire masses from points associated with v to points associated with
1, which would result in a transportation plan that does not fully respect the marginal distribution of
v and p. Therefore, the previous conclusion on the fact that v is a critical point of H if and only if
vy = p(Pow,(y)) for all y would not hold in the discrete case since the marginals are not respected.

Proposition 4. For p and v two discrete probability distributions with finite supports, v is a critical
point of H if and only if the transport plan T respects the mass at each point, i.e., T(v) = .

In other words, the transport plan ensures that the total mass transported to a point in the support
of u equals the mass of the point in the support of v. This no longer implies that the marginals of T'(v)
and p are equal since the transport plan is not required to be a bijection between the support of v and
1, but must respect the total mass at each point. To obtain a proper solution to this discrete optimal
transport problem, one would need to add a condition ensuring that the total mass transportation is
respected.

However, in practice, we can still use ASGD without regularization to find an approximate solution
to the discrete optimal transport problem. As the number of points in the discrete distributions is large,
especially for ;. when we sample a random patch from the current synthesis U’ at each iteration, it
can be seen as an approximation of a continuous distribution. Hence, using an ASGD-based approach
to optimize as done in the semi-discrete case can work well. Moreover, in that case, the ASGD
optimization does not aim to find a solution that perfectly matches the discrete distributions, but
rather a general transport plan that minimizes the cost on average, which is sufficient for practical
purposes as the exact matching distributions are not crucial.

One of the goals of this approach for patch sampling is to observe potential visual differences
between those sampling methods. On the one side, we could for instance imagine that some patterns
of the new synthesis are too close to those of the exemplar texture compared to the gaussianized
sampling functions (which we do not wish). However, we believe that the samples from U' are already
enough randomized thanks to the Gaussian Random field modeling with ADSN on the coarsest scale
and that ASGD should still converge as shown in the original paper. We will further investigate this
intuition in the results section.

4.2 Proposing new methods for patch recomposition

The transformations are done locally, ie patch per patch. However, the resulting global transformation
has "too many” pixel values because transformed patches overlap. To recompose the synthesis, the
method uses averaging. The averaging operation is defined in eq. (13) as:

We define two other recomposition operations that we wish to test. The first one consists of computing
the median instead of the mean. The motivation behind this approach is to avoid potential outliers
that might lead to a less visually satisfying synthesis. The median is more robust to the presence of
such outliers. However, we can also expect some drawbacks. Firstly, the computational cost is lower
for the mean than the median and also does not require storage of the values. Furthermore, if the
superposition of the transported patch is already satisfying, then the mean might be more suitable
and render a smoother visualization.

We define a second recomposition that consists of assigning weights to patches, which thus results
in a weighted average. The weighted operation is then defined as:

Vi(z)= Z Pa - Wp
pEV(T)

For the choices of weights, we decided to base it on the transportation cost. More precisely, the
more a patch has been transported, the lower its associated weight. Suppose we take as input the
transportation costs {C},}. We apply the following operations to obtain :

Cp — min(Cp)
—8. —4
W, =8 max(C)) — min(C))
1
Wo=l-10m

The goal of applying a sigmoid function to the weights is to bring more discrimination, which we
ensure by distributing the weights between —4 and 4 beforehand (corresponding to values between
0.02 and 0.98). In terms of computational cost, the above operations are relatively simple and the
transportation costs are already computed beforehand.

4.3 Using affine transport

In this part, we will propose a new way to transport the patches. Instead of using the biased nearest
neighbor method which is based on the (heavy) computation of v through ASGD, we use an affine
transformation where we adjust the mean and covariance matrix at the start and at the end to match
the two distributions. The main advantage of this method is naturally the computational cost, as
we only have to compute square roots and the inverse of both covariance matrices once, as shown in

eq. (16).

Definition 5. An affine transport transformation Toy between a source X and a target Y can be
written as

Tog(x) = Az +0b (16)

In order to create a coherent transport plan from one distribution to another, we consider the
following A and b :

Here, (X)) is the covariance matriz, and pu(X) is the mean of X.

Proposition 5. With the parameters given above and the definition of Ty, we guarantee the following
for X of mean and covariance matriz (u(X), X(X)) :

(Tag(X)) = n(Y)
{ S(Tu(X)) = S(Y) (17

Proof. Starting from the given formulas for A and b, we aim to show that
w(Tog(X)) = (YY) and 3(Tug(X)) = X(Y)

Now, p(Tag(X)) = Au(X) +b = Ap(X) + (V) — Ap(X) = p(Y). For the covariance matrix, we use
two results:
1. If X has covariance ¥(X) and A 1L X, then AX has covariance AX(X)A”.

2. STT(R) is stable under inversion and taking the square root (unique in this regard).

Thus:

Y(Tag(X)) = Z(AX) because b is constant

= AN(X

~— —

O

In this method, instead of finding v through ASGD, we compute the affine transformation through
A and b. The parameters A and b are chosen to adjust the mean and covariance of the patch distribution
of U! to the patch distribution v!. Then, applying the transformation to U' gives transformed patches,
that we can then map through a nearest neighbor assignment with the patches of v/. Affine transport
has several advantages over other methods for computing optimal transformations. Firstly, it is more
computationally efficient. Secondly, it is more flexible as directly brings patches back to the desired
distribution. The major drawback is the precision obtained and the fact that we assume a form of
linearity. Thus it might be more sensitive to potential outliers and induce poor transport for some
patches.

5 Experiments

In this section, we conduct a series of experiments to evaluate the efficiency of the methods and
extensions proposed above. One of the targets of our review consists of measuring the different
distances between the patches of the synthesis and the target patch distribution. We also aim
to look into the effectiveness of different patch recomposition methods, the impact of varying the
patch size hyperparameter, as well as a comparison of the runtimes of each method. These experi-
ments are designed not only to quantify the performance of these methodologies but also to provide
qualitative insights to better understand the strengths and limitations of different approaches. For
these experiments, we were able to start from the code of Texto provided by Arthur Leclaire and
added our extensions. Our code as well as the tested exemplar textures are available on GitHub:
https://github.com/Clement-W/TextureOptimalTransport_MVA.

5.1 Measure of distances from the target measure

Our experiments aim to test and compare our extensions with the original methods in terms of distance
to the target measure that we want to approach. More specifically we compare 4 methods:

e Texto: the original method proposed in the article.

¢ RandomPatch: this method is described in section 4.1, we replace the continuous measure p
with a discrete measure corresponding to a random patch selected from the current synthesis U".

10

https://github.com/Clement-W/TextureOptimalTransport_MVA

e AffineTransport: This method is described in section 4.3, we replace the optimal transport
problem with a simple affine transformation that adjusts the mean and covariance of the source
and target distributions.

e NNProjection: This method corresponds to a simple nearest neighbor projection of patches
without adding a bias v found by ASGD.

For the following results, the hyperparameters are fixed for all methods. We use a synthesis on L =4
scales with ngarar = 4 for Texto, and a patch size of 3 x 3. We compare these methods using the L2
Wasserstein distance between the samples Py (transported patches) and Y (samples from the target
patch distribution). Noting Pvz and /! the associated empirical distributions of patches, this distance
can be written Wg(}f’vz,ul). For these experiments, the transport distances are computed using to
the POT library [1]. As stochasticity is involved in the model, we averaged the obtained distances
over 10 runs, and then over the 4 scales of synthesis on each texture. We also computed confidence
intervals. Figure 5 displays these averaged Wasserstein distances for 8 selected textures. Moreover,
these distances are also given in Table 1 with confidence intervals.

mmm Texto
s RandomPatch
W NNProj
0.4 AffineTransport
o
e
503
kl
fa)
c
H
2
@
@
3
2 0.2
c
s
Q
=
0.1
I I | |
0.0 -
SJ S O S}
& & o W&
K3 & &
L)
&K 2
< R
>7 B

Texture

Figure 5: Averaged Wasserstein distance between the transported patches and the target patch
distribution. The results are averaged over 10 models for each texture and method. The standard
deviation is displayed with bars on the top of each histogram bar. These histograms compare the
distances obtained for the 4 considered methods: Texto, RandomPatch, NNProj, and AffineTransport.

We first observe in Figure 5 that for each texture, the nearest neighbor projection provides the
largest transport distance, which is expected as this method simply looks for the closest patches
between the two patch distributions without paying attention to the cost of transportation. Then we
observe similar results between Texto and AffineTransport. However, by looking closely at Table 1, we
note that the distance from the target distribution with AffineTransport is always smaller or equal to
that with Texto. Finally, for all textures, the RandomPatch method provides the lowest Wasserstein
distance. We hypothesize that RandomPatch avoids approximating the patch distribution with a
GMM at each scale, and thus better preserves the transported patch distributions.

To deepen our analysis and visualize the impact of these different methods on the synthesis, Figure
6 displays the synthesis obtained on a set of textures for each method. The exemplar textures are avail-
able in Appendix A. First, we observe that AffineTransport, Texto, and RandomPatch give the same
visual impression for the textures ground1013_small, google_grass_566, choc_scale and 161. However,
the nearest neighbor projection does not provide visually good results, except for the texture 161 which
has limited variations. For the flickr_cardboard_211 texture, AffineTransort and RandomPatch both
give similar results, and it seems that Texto preserves the glossiness aspect of the ”painting” in a better
way. This may come from the GMM modeling that captures well the lighter blurred areas, giving an

11

Texture name Texto RandomPatch NNProj AffineTransport
161.png 0.091 + 0.003 0.059 4 0.002 0.098 &+ 0.004 0.088 4 0.003
Sdesign24.png 0.067 + 0.004 0.057 + 0.003 0.068 £+ 0.003 0.063 + 0.003
choc_scale.png 0.097 + 0.002 0.083 + 0.003 0.104 £ 0.003 0.090 + 0.002
flickr_cardboard_211.png 0.178 £ 0.004 0.173 4+ 0.004 0.181 £ 0.005 0.175 &£ 0.005
google_brick_190.png 0.365 £+ 0.007 0.359 £+ 0.005 0.374 4+ 0.007 0.365 + 0.006
google_grass_566.png 0.185 + 0.006 0.180 + 0.006 0.192 + 0.007 0.182 + 0.007
ground1013_small.png 0.439 + 0.008 0.414 + 0.008 0.437 + 0.008 0.424 + 0.009
red_peppers.png 0.099 + 0.004 0.082 £+ 0.004 0.101 £+ 0.006 0.091 4 0.005

Table 1: Averaged Wasserstein distance between the transported patches and the target patch
distribution. The results are averaged over 10 models for each texture and method. The confidence
intervals are displayed along with each mean value. The distance values are compared between the
4 considered methods: Texto, RandomPatch, NNProj, and AffineTransport. The smallest distances
among these methods are emphasized in bold.

impression of glossiness. However, this remains a particularly challenging texture, as the reflections on
the bottom of the exemplar texture can hardly be captured by any of these models. Finally, for the
red_pepper texture, the AffineTransport seems to provide the best visual results especially because of
the space between the peppers that is better preserved than with the other methods.

5.2 Study of patch recomposition operations

In this section, we aim to study the effect of patch recomposition. In the synthesis process, the
patches Py are transformed by T to make this patch distribution closer to the target distribution v/!.
Then the overlapping patches are averaged to recompose the patches into an image. An interesting
question is to measure how much this recomposition R distances us from the target distribution 2!
that had been approached. To achieve this task, we can initially calculate the distance between a
patch and its transported version, and then determine the distance between the transported patch
and its recomposed version. This process provides insight into the extent of changes both before

and after the recomposition. More rigorously, we are comparing di = E[||Py: — Pyi||2] and do =
E {| | Pyt — Prq pvl)||2} where Pr(p, ,) corresponds to the set of patches of the recomposed images from

the patches Py:i. If dy is negligible compared to di, it indicates that the recomposition operation
has minimal impact on the values of the transported patch. Furthermore, it suggests that even after
recomposition, the patch distribution remains closely aligned with the transported patch distribution.
To extend this analysis, we also compare different methods for the patch recomposition operator R.
Originally, R is defined in equation 13, and corresponds to an averaging of the pixels of overlapping
patches. Here, we also compare the 2 alternative methods defined in section 4.2:

e MedianRecomp: Compute the median instead of the mean to recompose the patches

e WeightedAvg: Compute a weighted average of the overlapping patches using the patch trans-
portation costs as weights.

Figure 7 displays the distances d; and dy computed on the 4 scales and averaged over 5 models of
the same texture: red pepper. For all experiments of this section, we use the method Text with L = 3
scales, patch size of 3 x 3, and 4 GMM components. We first notice that ds (solid lines) is always
inferior to dy (dashed lines). However, we cannot state for sure that ds is negligible compared to d; as
they have the same order of magnitude. Hence, we observe that the recomposition operator is clearly
altering the pixel values, no matter the method employed between mean, median, or weighted average.
Moreover, as we are comparing the pixel values, it is not easy to discriminate which of these 3 methods
is more suitable to minimize the alterations of the transported patches. This first analysis helped
to understand that the recomposition operation applies another non-negligible transformation to the
patches. A relevant question that arises is how this recomposition is moving away the patch distribution
of Py from the target distribution v!. As the transport T'(x) transported the patches closer to 1!,
this second transformation could indeed move our patches further away from this distribution.

12

AffineTransport j RandomPatch

[rews™¢ 10T PUnNoIs 99G™sse13 013008 [1g PIeoqpred iy 9[RIS™O0YD 191

stoddad por

Figure 6: Synthesis of 6 textures with the four methods AffineTransport, Texto, NN Proj, and Ran-
domPatch. All syntheses are performed with L = 4 scales, a patch size of 3x 3, and 4 GMM components
for Texto.

For this purpose, we computed the Wasserstein distance between the target distributions with the
distribution of transported patches and recomposed patches:

13

—— d2 - mean
=—— d2 - median
— d2 - weighted avg
1.07 == dl-mean
== d1 - median
—=— d1 - weighted avg
0.9
0.8
0
o
2
2 0.7 4
0)
[=
o
2
<
0.6
0.5
0.4
0.3

Scales

Figure 7: Comparison of distances dy = E[||Pyi — Py:i||2] (solid line) and dy = E [||Pvz — Prep,ll2
(dashed lines) on 4 scales, averaged over 5 models built on the red pepper texture. The different
recomposition methods R (simple average, median, weighted average) are displayed with different
colors. The standard deviation is displayed with vertical lines at each scale.

® diransfo = Wg(pvl ,v!) with pvl the associated empirical distributions to Py
® drccomp = WQ(pR(PVL), V') with PR(pvl) the associated empirical distributions to PR(pvl)

The resulting distances are presented in figure 8. These transport distances were again averaged over

—— d_recomp - mean
0.200 4 = d_recomp - median
—— d_recomp - weighted avg
== d_transfo - mean
== d_transfo - median
0.175 1 — = d_transfo - weighted avg
® 0.150 4
o
c
£
o
o
£ 0.125 A
L
4
o]
8
=]
> 0.100
o
o
2
<
0.075 4
0.050 4
0.025 4

Scales

Figure 8: Comparison of Wasserstein distances dironsfo = WQ(Pvl,Vl) (dashed lines) and drecomp
= WQ(PR(Py v!) (solid lines) on 4 scales, averaged over 5 models built on the red pepper texture.
The different recomposition methods R (simple average, median, weighted average) are displayed with
different colors.

5 models of the red pepper texture. First, we notice that for each recomposition method, the distance

14

drecomp (s0lid lines) is always greater than dirqns fo (dashed lines). This confirms that the recomposition
operation moves away the patches from the target distribution that have been approached previously
by the transport. If we compare the three methods of recomposition specified with colors in Figure
8, we notice that at scale 2 there is a clear hierarchy, which seems to disappear on the next scales of
synthesis. By also looking closely at the exact Wasserstein distances given in Table 2, it seems that
the median recomposition helps to remain closer to the target distribution compared to the two other
methods and that the simple average recomposition is the method that takes the patch distributions
furthest from v!. To confirm these results it would be necessary to run more experiments with different
textures. To better understand the impact of these recomposition methods we also tried to inspect

Scale 3 Scale 2 Scale 1 Scale 0
Method

(mean) d_transfo 0.2005 £ 0.0152 0.1647 £ 0.0111 0.0240 £ 0.0003 0.0791 £ 0.0062
(mean) d_recomp 0.2011 + 0.0153 0.1692 &= 0.0112 0.0355 £ 0.0013 0.0901 £ 0.0041
(median) d-transfo 0.2010 £ 0.0199 0.1518 £ 0.0053 0.0250 &+ 0.0009 0.0772 %+ 0.0075
(median) d_recomp 0.2014 + 0.0200 0.1542 + 0.0054 0.0348 + 0.0015 0.0876 + 0.0042
(w. avg) d_transfo 0.2034 £+ 0.0164 0.1582 + 0.0128 0.0256 4+ 0.0008 0.0793 £ 0.0045
(w. avg) d_recomp 0.2040 £ 0.0165 0.1616 + 0.0135 0.0366 + 0.0010 0.0883 % 0.0041

g =

Table 2: Comparison of Wasserstein distances diansfo = Wa(Pyt, ') and dyecomp = WQ(pR(Poi)s vh)
(solid lines) on 4 scales, averaged over 5 models built on the red pepper texture. The confidence interval
of each averaged distance is also given. This table also compares the 3 different recomposition methods
mean, median, and weighted average (w. avg). For each scale, the minimal d,.ecomp is emphasized in
bold which shows the method that minimizes the transport distance to the target distribution.

multiple syntheses with the 3 recomposition methods. As an example, Figure 9 displays the synthesis
of the red pepper texture with the 3 methods, which shows that there are no obvious differences.

(a) Simple average (b) Median (c) Weighted Average

Figure 9: Visual Comparison of patch recomposition methods for the red pepper texture.

5.3 Increasing the patch size

Some textures contain large repetitive patterns that cannot be captured with small patch sizes such
as 3 x 3. However, due to the computational complexity of ASGD, it is difficult to increase the patch
size for Texto. For instance, increasing the patch size from 3 x 3 to 4 x 4 increases the dimension from
27 to 48. This high dimension makes ASGD longer to converge, which prevents the use of larger patch
sizes in practice. However, it is interesting to compare the behavior of Texto, RandomPatch, NNProj,
and AffineTransport with different patch sizes. Figure 10 displays the Sdesign24 texture synthesized
by the 4 methods with 3 different patch sizes. This texture is very challenging due to the size and
regularity of the repetitive pattern which is hard to capture with a small patch size. For the default
patch size 3 x 3, we roughly observe similar results between Texto, RandomPatch, and Affine, even
though Affine already captures larger patterns compared to the 2 other methods. The nearest neighbor

15

method is hardly capturing the relevant information and let appears several holes or wrong patterns.
At a patch size of 4 x 4, the affine transform method already produces visually close results, despite
some missing parts appearing on some patterns. With a patch size of 5 x 5, Texto and RandomPatch
produces similar results with a correct reproduction of the texture despite some missing parts. The
synthesis produced with affine transport is almost perfect, we can still observe missing parts at some
locations. This experiment shows that at an increased computational cost, having a larger patch size
indeed improves the reconstruction quality for some textures. From our experiments, it seems that the
AffineTransport method produces the closest textures to the exemplar texture in this extreme case.

AffineTransport Texto NN Proj RandomPatch

Figure 10: Synthesis of the Sdesign24 texture with the 4 methods (AffineTransport, Texto, NNProj,
RandomPatch) and different patch sizes w varying from 3 x 3 to 5 x 5.

5.4 Runtime comparison

Finally, we can compare the computational time of the different methods: RandomPatch, AffineTrans-
port, Texto, and Nearest neighbors projection. As done in section 5.1 we averaged the results on
the same 10 runs. These computations were made on the same computer working with an Intel(R)
Xeon(R) W-1290P CPU processor of frequency 3.70GHz. The averaged runtime in seconds with the
confidence intervals is displayed in table 3. We notice that affine transport is approximately as fast
as the nearest neighbor, which is expected as it is essentially equivalent, except that affine transport
applies an additional step of transformation to the patches, which is very fast to estimate and compute.
For Randompatch and Texto, the longer runtime is due to ASGD which aims to find the optimal v
to transport p on v. Compared to Texto random patch is faster because instead of sampling into a
GMM at each step of ASGD, a random patch is selected in the set of patches, which is very fast.

16

Texture (Size) Texto RandomPatch NNProj AffineTransport
161.png (64, 64) 204.24 £ 2.67 18.74 £ 0.29 1.09 £+ 0.02 1.12 £ 0.01
Sdesign24.png (200, 200) 228.97 £ 1.47 39.54 £+ 0.52 14.26 +£ 0.27 14.45 £+ 0.21
choc_scale.png (150, 150) 215.80 + 1.45 31.42 + 0.52 8.25 £ 0.15 8.52 £+ 0.11
flickr_cardboard_211.png (300, 300) 244.52 + 2.24 53.66 + 0.80 27.13 £ 0.42 28.00 = 0.54
google_brick_190.png (300, 300) 247.71 £2.59 54.24 £+ 0.89 26.99 + 0.38 28.25 + 0.49
google_grass_566.png (300, 300) 250.16 £ 3.01 54.27 £ 0.78 28.25 £ 0.62 28.34 + 0.69
ground1013_small.png (256, 256) 238.44 £ 1.45 47.70 =+ 0.73 21.85 £ 0.38 21.57 £+ 0.23
red_peppers.png (128, 128) 216.52 + 1.45 27.86 + 0.60 5.64 + 0.10 5.89 £+ 0.11

Table 3: Mean runtimes in seconds + confidence intervals computed on 10 syntheses for each different
texture and method. The calculations were made using an Intel(R) Xeon(R) W-1290P CPU processor
of frequency 3.70GHz.

6 Conclusion

In this report, we began by explaining the methodology described in the paper, supplemented by illus-
trative examples of the algorithm in action. Based on our understanding and further discussions, we
introduced extensions to the original method that offered some promising insights. The results section
presents quantitative and visual evaluations to test the validity of these extensions, highlighting diver-
gences from the original approach. In particular, we observed that the RandomPatch method remains
relatively close to the original Texto method. As for the recomposition method, our examination re-
vealed minimal alteration of results, suggesting that this step is not as core as others. In addition,
the application of the affine transport strategy produced positive results, supported by both numerical
measurements and visual representations. To offer a more comprehensive understanding of the impact
of each method, one could include a wider range of textures, chosen for their diverse characteristics.
Here, it would take too much time to compute hundreds or thousands of models for each method. In
conclusion, we were very pleased to work on this topic and we hope that our efforts can bring some
new insights about this paper and on patch-based texture synthesis.

References

[1] Rémi Flamary et al. “POT: Python Optimal Transport”. In: Journal of Machine Learning Re-
search 22.78 (2021), pp. 1-8. URL: http://jmlr.org/papers/v22/20-451.html.

[2] Bruno Galerne, Yann Gousseau, and Jean-Michel Morel. “Random phase textures: Theory and
synthesis”. In: IEEE Transactions on image processing 20.1 (2010), pp. 257-267.

[3] Bruno Galerne, Arthur Leclaire, and Lionel Moisan. “A texton for fast and flexible Gaussian
texture synthesis”. In: 2014 22nd European Signal Processing Conference (EUSIPCO). TEEE.
2014, pp. 1686-1690.

[4] Bruno Galerne, Arthur Leclaire, and Julien Rabin. “A texture synthesis model based on semi-
discrete optimal transport in patch space”. In: STAM Journal on Imaging Sciences 11.4 (2018),
pp. 2456-2493.

[6] Aude Genevay et al. “Stochastic optimization for large-scale optimal transport”. In: Advances in
neural information processing systems 29 (2016).

[6] Bela Julesz. “Textons, the elements of texture perception, and their interactions”. In: Nature
290.5802 (1981), pp. 91-97.

[7] Javier Portilla and Eero P Simoncelli. “A parametric texture model based on joint statistics of
complex wavelet coefficients”. In: International journal of computer vision 40 (2000), pp. 49-70.

A Textures tested

17

http://jmlr.org/papers/v22/20-451.html

Figure 11: Exemplar textures used for our experiments.

18

	Introduction
	Background
	Semi-discrete optimal transport formulation
	Approximation of optimal transport maps

	Patch-based semi-discrete optimal transport for texture synthesis
	Synthesis at coarse scale
	Synthesis at finer levels
	Multiscale synthesis framework

	Extensions
	Sampling random patches instead of Gaussian modeling
	Proposing new methods for patch recomposition
	Using affine transport

	Experiments
	Measure of distances from the target measure
	Study of patch recomposition operations
	Increasing the patch size
	Runtime comparison

	Conclusion
	Textures tested

